The radius of a nucleus of hydrogen is approximately

, while we can use the Borh radius as the distance of an electron from the nucleus in a hydrogen atom:

The radius of a dime is approximately

: if we assume that the radius of the nucleus is exactly this value, then we can find how far is the electron by using the proportion

from which we find

So, if the nucleus had the size of a dime, we would find the electron approximately 500 meters away.
John needs to see a physical therapist because he cannot walk very well.
Answer:
The answer is below
Explanation:
A diver works in the sea on a day when the atmospheric pressure is 101 kPa. The diver uses compressed air to breathe under water. 1700 litres of air from the atmosphere is compressed into a 12-litre gas cylinder. The compressed air quickly cools to its original temperature. Calculate the pressure of the air in the cylinder.
Solution:
Boyles law states that the volume of a given gas is inversely proportional to the pressure exerted by the gas, provided that the temperature is constant.
That is:
P ∝ 1/V; PV = constant
P₁V₁ = P₂V₂
Given that P₁ = initial pressure = 101 kPa, V₁ = initial volume = 1700 L, P₂ = cylinder pressure, V₂ = cylinder volume = 12 L. Hence:
P₁V₁ = P₂V₂
100 kPa * 1700 L = P₂ * 12 L
P₂ = (100 kPa * 1700 L) / 12 L
P₂ = 14308 kPa
Answer:
Explanation:
No.
There is a difference between energy, called heat in this case, and temperature, which is a measure of the amount of heat contained in a material and is dependent on the material properties.
Temperature difference is what causes heat to move from one body to another.
Two objects at different temperatures placed in contact with one another will cause heat to move from the warmer body to the colder body until the temperature difference is eliminated.
The amount of heat leaving the warmer body will exactly equal the amount of heat absorbed by the cooler body. (assuming isolated system of two bodies) The temperature change within each of those bodies could be vastly different.
Example would be a 2 mm bead of molten lead dropped into a liter glass of tap water. The lead may cool several hundred °C as it solidifies while the water temperature would increase less than 1 °C
<span>protection from injustices</span>