Answer:
d = 0.05 [m] = 50 [mm]
Explanation:
We must remember the principle of conservation of energy which tells us that energy is transformed from one way to another. For this case, the initial kinetic energy is transformed into useful work that is equal to the product of force by distance.
![E_{k}=F*d\\400 = 8000*d\\d = 0.05 [m] = 50 [mm]](https://tex.z-dn.net/?f=E_%7Bk%7D%3DF%2Ad%5C%5C400%20%3D%208000%2Ad%5C%5Cd%20%3D%200.05%20%5Bm%5D%20%3D%2050%20%5Bmm%5D)
The particles can undergo small oscillations around x₂.
The given parameters;
- <em>initial energy of the particles = E₁</em>
- <em>final energy of the particles, E₂ = 0.33E₁</em>
The movement of the particles depends on the kinetic energy of the particles.
When kinetic energy of the particles is 100%, the particles can oscillate from x₁ to x₅.
However, when the total energy of this particles is reduced to one-third (¹/₃) or 33% of the initial energy of the particle, the oscillation of the particles will be reduced.
- The maximum position the particle can oscillate is x₅
- The half position the particles can oscillate is x₃
Since 33% is less than the half of the energy of the particle, the particle will oscillate between x₁ and x₂.
Thus, we can conclude that the particles can undergo small oscillations around x₂.
Learn more here:brainly.com/question/23910777
Answer:
<h2>
3000 J</h2>
Option C is the correct option.
Explanation:
Given,
Force = 600 N
Distance = 5 meters
Work = ?
Now,
Work = Force
distance

Calculate the product
Joule
Hope this helps...
Good luck on your assignment..
Answer:
Balances and Scales
A balance compares an object with a known mass to the object in question. One example of a balance is the triple beam balance. The standard unit of measure for mass is based on the metric system and is typically denoted as kilograms or grams.
Answer:
B. The buoyant force on the copper block is greater than the buoyant force on the lead block.
Explanation:
Given;
mass of lead block, m₁ = 200 g = 0.2 kg
mass of copper block, m₂ = 200 g = 0.2 kg
density of water, ρ = 1 g/cm³
density of lead block, ρ₁ = 11.34 g/cm³
density of copper block, ρ₂ = 8.96 g/cm³
The buoyant force on each block is calculated as;

The buoyant force of lead block;

The buoyant force of copper block

Therefore, the buoyant force on the copper block is greater than the buoyant force on the lead block