1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
N76 [4]
3 years ago
12

You come across an open container which is filled with two liquids. Since the two liquids have different density there is a dist

inct separation between them. Water fills the lower portion of the container to a depth of 0.209 m which has a density of 1.00 × 103 kg/m3. The fluid which is floating on top of the water is 0.300 m deep. If the absolute pressure on the bottom of the container is 1.049 × 105 Pa, what is the density of the unknown fluid? The acceleration due to gravity is g = 9.81 m/s2 and atmospheric pressure is P0 = 1.013 × 105 Pa.
Physics
1 answer:
Slav-nsk [51]3 years ago
4 0

Answer:

526.57 Pa

Explanation:

P ( pressure at the bottom of the container) = 1.049 × 10^5 pa

Using the formula of pressure in an open liquid

Pw ( pressure due to water) = ρhg where ρ is density of water in kg/m³, h is the height in meters, and g is acceleration due to gravity in m/s²

Pw = 1000 × 9.81 ×0.209 = 2050.29 Pa

P( atmospheric pressure) = 1.013 × 10^5 Pa

Pl ( pressure due to the liquid) = ρ(density of the liquid) × h (depth of the liquid) × g

Subtract each of the pressure from the absolute pressure at the bottom

P(bottom) - atmospheric pressure

(1.049 × 10^5) - (1.013 × 10^5) = 0.036 × 10^5 = 3600 Pa

subtract pressure due to water from the remainder

3600 - 2050.29 = 1549.71 Pa

1549.71 =  ρ(density of the liquid) × h (depth of the liquid) × g

ρ (density of the liquid) = 1549.71 / (h × g) = 1549.71 / (0.3 × 9.81) =526.57 Pa

You might be interested in
PLEASE ANSWER ASAP BEFORE MY TEACHER AND MY MOM KILLES ME PLEASE ASAP
grandymaker [24]

Answer:

the red at the bottom should not count, but the red at the top is the least dense because it floats upon the other liquids

Explanation:

hope this helps

7 0
2 years ago
Which of the following statements about the force on a charged particle due to a magnetic field are not valid?
Vinil7 [7]
The correct answer is "None of the above; all of these statements are valid." All the statements namely, it depends on the particle's charge, it depends on the strength of the external magnetic field, it depends on the particle's velocity, and it acts at right angles to the direction of the particle's motion are all valid. Thank you for posting your question. I hope this answer helped you. Let me know if you need more help. 
5 0
3 years ago
Find the ratio of the final speed of the electron to the final speed of the hydrogen ion, assuming non-relativistic speeds. Take
KiRa [710]

Answer:

\frac{V_{e}}{V_{h}}=0.428*10^{2}

Explanation:

From conservation of energy states that

K_{i}+v_{i}=v_{f}+K_{f}\\ as\\K_{i}=0\\K_{f}=1/2mv^{2}\\ v_{i}=qv\\v_{f}=0\\So\\qv=1/2mv^{2}\\ v=\sqrt{\frac{2qv}{m} }\\ Velocity_{electron}=\sqrt{\frac{2qv}{m_{e}} }\\Velocity_{hydrogen}=\sqrt{\frac{2qv}{m_{h}} }\\\frac{V_{e}}{V_{h}}=\sqrt{\frac{\frac{2qv}{m_{e}}}{\frac{2qv}{m_{h}}}}\\\frac{V_{e}}{V_{h}}=\sqrt{\frac{m_{h}}{m_{e}} }\\\frac{V_{e}}{V_{h}}=\sqrt{\frac{1.67*10^{-27} }{9.11*10^{-31} } }\\\frac{V_{e}}{V_{h}}=0.428*10^{2}

5 0
3 years ago
How does mass affect acceleration during free fall?
nirvana33 [79]
The first one, as the mass is higher so it accelerates more
3 0
2 years ago
If you weigh 690 N on the earth, what would be your weight on the surface of a neutron star that has the same mass as our sun an
lana [24]

Answer:

Explanation:

Given that,

Mass of star M(star) = 1.99×10^30kg

Gravitational constant G

G = 6.67×10^−11 N⋅m²/kg²

Diameter d = 25km

d = 25,000m

R = d/2 = 25,000/2

R = 12,500m

Weight w = 690N

Then, the person mass which is constant can be determined using

W =mg

m = W/g

m = 690/9.81

m = 70.34kg

The acceleration due to gravity on the surface of the neutron star is can be determined using

g(star) = GM(star)/R²

g(star) = 6.67×10^-11 × 1.99×10^30 / 12500²

g (star) = 8.49 × 10¹¹ m/s²

Then, the person weight on neutron star is

W = mg

Mass is constant, m = 70.34kg

W = 70.34 × 8.49 × 10¹¹

W = 5.98 × 10¹³ N

The weight of the person on neutron star is 5.98 × 10¹³ N

5 0
3 years ago
Other questions:
  • Calculate the potential energy of 5kg object sitting on a 3m ledge.
    8·1 answer
  • Ellen needs to move a heavy box across the floor and then place it on a shelf that is four feet above the floor. Which use of ma
    15·2 answers
  • What is the complete back-and-forth motion of an object called?
    15·1 answer
  • Pls help i’ll give brainliest if you give a correct answer!!
    15·2 answers
  • What average net force is required to stop a 4.5 kg bowling ball,initially at rest, accelerated for 6 seconds over a distance of
    12·1 answer
  • Write down the relation between energy and power​
    13·2 answers
  • Which circuit would have the most electrical power?
    12·1 answer
  • Which statements explain the special theory of relativity? Check all that apply.
    6·2 answers
  • The speed of a star, can you measure it? Is it constant?
    7·1 answer
  • Da 6.0 kg wooden crate slides across a wooden floor
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!