Refer to the diagram shown below.
m = the mass of the object
x = the distance of the object from the equilibrium position at time t.
v = the velocity of the object at time t
a = the acceleration of the object at time t
A = the amplitude ( the maximum distance) of the mass from the equilibrium
position
The oscillatory motion of the object (without damping) is given by
x(t) = A sin(ωt)
where
ω = the circular frequency of the motion
T = the period of the motion so that ω = (2π)/T
The velocity and acceleration are respectively
v(t) = ωA cos(ωt)
a(t) = -ω²A sin(ωt)
In the equilibrium position,
x is zero;
v is maximum;
a is zero.
At the farthest distance (A) from the equilibrium position,
x is maximum;
v is zero;
a is zero.
In the graphs shown, it is assumed (for illustrative purposes) that
A = 1 and T = 1.
To solve this problem we will apply the normal distribution, with which we will obtain the probability that the given event will occur. Concepts such as the mean and standard deviation will be present throughout the solution of the problem. Increasing or decreasing the average would change the location or center point of the curve. The change in the standard deviation would lead to the change in the dispersion of the data. As the standard deviation increases, the curve would become flatter.
Let X be the output voltage of power supply
X∼N 
A
The lower and upper specifications for voltage are 4.95 V and 5.05 V, respectively





Hence probability that a power supply selected at random will conform to the specifications on voltage is 0.9876
The answer to this question is dropping it on a hard surface.
By looking at the acceleration of the object.
In fact, Netwon's second law states that the resultant of the forces acting on an object is equal to the product between the mass m of the object and its acceleration:

So, when static friction is acting on the object, if the object is still not moving we know that all the forces are balanced: in fact, since the object is stationary, its acceleration is zero, and so the resultant of the forces (left term in the formula) must be zero as well (i.e. the forces are balanced).
The answer is carbon dioxide. This primordial earths’ atmosphere was composed by gasses from degassing of the earth's interior after its formation. It is after the beginning of life that oxygen levels began to rise and levels of carbon dioxide began to reduce in the atmosphere (as a result of photosynthesis).