1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Aleksandr [31]
3 years ago
15

Urbanization is the cause of "urban heat island" a condition that could be described as global warming caused by pollutants of a

city increase of temperature in a city due to heat absorption of buildings and roads warming of water that is next to a city warming of a city near mountains due to lava under the ground
Physics
1 answer:
Lena [83]3 years ago
4 0

Urbanization is the cause of "urban heat island" a condition that could be described as an increase of temperature in a city due to heat absorption of buildings and roads. The temperature alteration usually is higher at night than during the day and is most specious when winds are feeble. UHI is most obvious during the summer and winter<span>. The main reason for the urban heat island effect is from the alteration of land surfaces. </span>

You might be interested in
A charge of 80 coulombs passes through a circuit in 5 seconds. What is the current through the circuit?
UkoKoshka [18]

Answer:

I = 16amp

Explanation:

Charge coulomb ( Q ) = It

Where I =current in ampere

t = time = 5 seconds

80 = I × 5

I = 80/5

I = 16amp

The current through the circuit will be I = 16amp

4 0
3 years ago
Arm ab has a constant angular velocity of 16 rad/s counterclockwise. At the instant when theta = 60
geniusboy [140]

The <em>linear</em> acceleration of collar D when <em>θ = 60°</em> is - 693.867 inches per square second.

<h3>How to determine the angular velocity of a collar</h3>

In this question we have a system formed by three elements, the element AB experiments a <em>pure</em> rotation at <em>constant</em> velocity, the element BD has a <em>general plane</em> motion, which is a combination of rotation and traslation, and the ruff experiments a <em>pure</em> translation.

To determine the <em>linear</em> acceleration of the collar (a_{D}), in inches per square second, we need to determine first all <em>linear</em> and <em>angular</em> velocities (v_{D}, \omega_{BD}), in inches per second and radians per second, respectively, and later all <em>linear</em> and <em>angular</em> accelerations (a_{D}, \alpha_{BD}), the latter in radians per square second.

By definitions of <em>relative</em> velocity and <em>relative</em> acceleration we build the following two systems of <em>linear</em> equations:

<h3>Velocities</h3>

v_{D} + \omega_{BD}\cdot r_{BD}\cdot \sin \gamma = -\omega_{AB}\cdot r_{AB}\cdot \sin \theta   (1)

\omega_{BD}\cdot r_{BD}\cdot \cos \gamma = -\omega_{AB}\cdot r_{AB}\cdot \cos \theta   (2)

<h3>Accelerations</h3>

a_{D}+\alpha_{BD}\cdot \sin \gamma = -\omega_{AB}^{2}\cdot r_{AB}\cdot \cos \theta -\alpha_{AB}\cdot r_{AB}\cdot \sin \theta - \omega_{BD}^{2}\cdot r_{BD}\cdot \cos \gamma   (3)

-\alpha_{BD}\cdot r_{BD}\cdot \cos \gamma = - \omega_{AB}^{2}\cdot r_{AB}\cdot \sin \theta + \alpha_{AB}\cdot r_{AB}\cdot \cos \theta - \omega_{BD}^{2}\cdot r_{BD}\cdot \sin \gamma   (4)

If we know that \theta = 60^{\circ}, \gamma = 19.889^{\circ}, r_{BD} = 10\,in, \omega_{AB} = 16\,\frac{rad}{s}, r_{AB} = 3\,in and \alpha_{AB} = 0\,\frac{rad}{s^{2}}, then the solution of the systems of linear equations are, respectively:

<h3>Velocities</h3>

v_{D}+3.402\cdot \omega_{BD} = -41.569   (1)

9.404\cdot \omega_{BD} = -24   (2)

v_{D} = -32.887\,\frac{in}{s}, \omega_{BD} = -2.552\,\frac{rad}{s}

<h3>Accelerations</h3>

a_{D}+3.402\cdot \alpha_{BD} = -445.242   (3)

-9.404\cdot \alpha_{BD} = -687.264   (4)

a_{D} = -693.867\,\frac{in}{s^{2}}, \alpha_{BD} = 73.082\,\frac{rad}{s^{2}}

The <em>linear</em> acceleration of collar D when <em>θ = 60°</em> is - 693.867 inches per square second. \blacksquare

<h3>Remark</h3>

The statement is incomplete and figure is missing, complete form is introduced below:

<em>Arm AB has a constant angular velocity of 16 radians per second counterclockwise. At the instant when θ = 60°, determine the acceleration of collar D.</em>

To learn more on kinematics, we kindly invite to check this verified question: brainly.com/question/27126557

5 0
2 years ago
) A satellite of mass m has an orbital period T when it is in a circular orbit of radius R around the earth. If the satellite in
Mrrafil [7]

Answer:

A) T.

Explanation:

Kepler's third law states that the orbital period (T) of a satellite is related with the radius (R) and the mass of the object (M) it orbits:

T=\frac{2\pi R^{\frac{3}{2}}}{\sqrt{GM}}  

So the orbital period is independent of the mass of the satellite, that means no matter the mass every satellite at a radius R around the earth have an orbital period A.

4 0
3 years ago
A rocket weighs 9800N (opposing force) what is it mass? What netforce moves the rocket? What applied force gives it a vertical a
Slav-nsk [51]

For the first part of this question, consider that "weight" can be described as mass x acceleration of gravity. Weight is expressed in Newtons. To solve for mass in this case, simply divide 9800N by 9.8m/s^2 (Earth's gravitational acceleration). This will give you a mass of 1000 kg. This mass is moved due to the net force supplied by the normal force from the rocket "pushing" off of Earth.

For the second part, we will use the equation F = ma, which is Newton's second law. For this, we know the m, or mass, is 1000 kg. Also, we know the a, or acceleration, will be 4 m/s^2. To solve for force, we will multiply both of these values. This gives a force of 4000 N. I hope this clears things up!

6 0
3 years ago
A delivery truck travels 2.8 km North, 1.0 km East, and 1.6 km South. The final displacement from the origin is ___km to the ___
34kurt

Answer:

The final displacement from the origin is <u>1.6</u> km to the <u>NE</u>

Explanation:

The directions in which the delivery truck travels are;

1) 2.8 km North = 2.8·\hat j, in vector form

2) 1.0 km East = 1.0·\hat i, in vector form

3) 1.6 km South = -1.6·\hat j, in vector form

Therefore, to find the final displacement, Δx, of the delivery truck, we add the individual displacements as follows;

Final displacement, Δd = 2.8·\hat j + 1.0·\hat i +(-1.6·\hat j) = 1.2·\hat j + 1.0·\hat i

Final displacement, = 1.0·\hat i + 1.2·\hat j

Where;

Δx = The displacement in the x-direction = 1.0·\hat i

Δy = The displacement in the y-direction = 1.2·\hat j

The magnitude of the resultant displacement vector is given as follows

\left | d \right | = √((Δx)² + (Δy)²) = √(1² + 1.2²) ≈ 1.6 (To the nearest tenth)

The magnitude of the resultant displacement vector ≈ 1.6 km

The direction of the resultant vector is positive for both the east and north direction, therefore, the direction of the resultant vector = NE

Therefore, the resultant displacement of the delivery truck is approximately 1.6 km, NE from the origin.

3 0
3 years ago
Other questions:
  • If a freely falling object were somehow equipped with a speedometer, its speed
    7·1 answer
  • In a transverse wave, ____________________ is measured from crest to crest or from trough to trough.
    10·2 answers
  • Which of the following conditions will maximize the amount of interest you earn?
    8·1 answer
  • 7. Plasma from blood (density = 1025 kg/m3) flows along a vertical channel in a steady, incompressible, fully developed laminar
    14·1 answer
  • In your opinion, is "avoiding" an effective conflict management strategy? Why or why not?
    15·2 answers
  • What is the density of a 500 g rectangle block with the following dimensions: Length = 8.0 cm, Width = 6.0 cm,
    11·1 answer
  • A computer is reading data from a rotating cd-rom. at a point that is 0.0130 m from the center of the disk, the centripetal acce
    14·1 answer
  • If a force of 40N is applied for 0.2 sec to change the momentum of a volleyball, what is the impulse?
    9·1 answer
  • 6 real life applications of liquid pressure with pictures and explanation
    15·1 answer
  • How does the force block A exerts on block B compare to the force block B exerts on block A?
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!