Answer:
441 [N].
Explanation:
Weight=mass*g, where mass=45; g=9,8.
Weight=45*9.8=441 [N].
When we say "<span>The moon's surface gravity is one-sixth that of the earth.",
we mean that the acceleration of gravity on the Moon's surface is 1/6 of
the acceleration of gravity on the Earth's surface.
The acceleration of gravity is (9.8 m/s</span>²) on the Earth's surface, so
<span>it would be (9.8/6 m/s</span>²) on the Moon's surface.
<span>
The weight of any object, right now, is
(object's mass) </span>· (acceleration of gravity where the object is located now) .
<span>
If the object's mass is 24 kg and the object is on the Moon right now,
then its weight is
(24 kg) </span>· (9.8/6 m/s²)
= (24 · 9.8 / 6) kg-m/s²
= 39.2 Newtons
Bio-gas is the naturally produced fossil fuel, a by-product when bacteria decompose organic material under anaerobic conditions.
<h3><u>Explanation:</u></h3>
Organic matter particularly waste material is broken down by bacteria through fermentation in an environmental condition without any presence of oxygen. This process of decomposition leads to formation of bio-gas with "carbon dioxide and methane" in a 2:3 ratio.
The above biological process is termed as bio-digestion or anaerobic digestion. Methane is flammable and thus bio-gas can be used as "energy source", a waste-to-energy transformation. The remaining decomposed matter is ideal as manure for plants due to its rich nutrient level.
Answer:
2.69 m/s
Explanation:
Hi!
First lets find the position of the train as a function of time as seen by the passenger when he arrives to the train station. For this state, the train is at a position x0 given by:
x0 = (1/2)(0.42m/s^2)*(6.4s)^2 = 8.6016 m
So, the position as a function of time is:
xT(t)=(1/2)(0.42m/s^2)t^2 + x0 = (1/2)(0.42m/s^2)t^2 + 8.6016 m
Now, if the passanger is moving at a constant velocity of V, his position as a fucntion of time is given by:
xP(t)=V*t
In order for the passenger to catch the train
xP(t)=xT(t)
(1/2)(0.42m/s^2)t^2 + 8.6016 m = V*t
To solve this equation for t we make use of the quadratic formula, which has real solutions whenever its determinat is grater than zero:
0≤ b^2-4*a*c = V^2 - 4 * ((1/2)(0.42m/s^2)) * 8.6016 m =V^2 - 7.22534(m/s)^2
This equation give us the minimum velocity the passenger must have in order to catch the train:
V^2 - 7.22534(m/s)^2 = 0
V^2 = 7.22534(m/s)^2
V = 2.6879 m/s