The direction of force, when electric current and magnetic field direction given is at 90° to the plane containing current I and Magnetic field B.
<h3>What is magnetic force?</h3>
The force of attraction or repulsion experienced by a magnetic material when it enters the magnetic field.
When a wire with an electric current I is placed in a magnetic field of strength B it experiences a magnetic force F.
According to the Fleming's right hand rule, the direction can be determined by knowing any two parameter's direction.
Thus, The direction of force is at 90° to the plane containing current I and Magnetic field B.
Learn more about magnetic force.
brainly.com/question/10353944
#SPJ4
Answer:
Change in momentum, 
Explanation:
It is given that,
Mass of the basketball, m = 601 g = 0.601 kg
The basketball makes an angle of 29 degrees to the vertical, it hits the floor with a speed, v = 6 m/s
It bounces up with the same speed, again moving to the right at an angle of 29 degree to the vertical. We need to find the change in momentum. It is given by :




So, the change in momentum of the basketball is 6.3 kg-m/s. Hence, this is the required solution.
Answer:
5 N
Explanation:
The bucket is moving at a constant speed of 2m/s Therefore F=ma is 0 N for this to be correct the magnitude of the force exerted by the rope must be equal to the weight of the bucket which is 5 N
Answer:
You're strong.
Explanation:
I've been thinking of this for quite a while, and I realized that your body has a certain limit to how much pain it can take. So, punching yourself extremely hard will cause pain, because that's your body's reaction to immense pressure being put on it. But, the fact that you punched yourself so hard that it hurts, shows that you are capable of applying so much pressure; therefore, you are strong.
<span>............D. Elliptical</span>