The answer to your quesiton is,
A) Venus has phases.
-Mabel <3
A. Is very attractive. If it's sublimation directly from water vapor in the air to ice on the glass, then yes. But from liquid water mist to water ice, no. Ice is less dense than water. That's why cubes float in your soda. Better leave 'A' alone. . . . D. Ice pellets turn to liquid. That one's good.
Answer:
75.5g
Explanation:
From the ionic equation, we can write

next we find the number of charge
Note Q=it
for i=8.5A, t=3.75 to secs 3.75*60*60=13500secs
hence

Since one faraday represent one mole of electron which equal 96500C
Hence the number of mole produced by 114750C is
114750/96500=1.2mol
The mass of copper produced is

Hence the amount of copper produced is 75.5g
Answer is a) the force caused by the wend nag encountering wind and air.
Answer:
a) V = - x ( σ / 2ε₀)
c) parallel to the flat sheet of paper
Explanation:
a) For this exercise we use the relationship between the electric field and the electric potential
V = - ∫ E . dx (1)
for which we need the electric field of the sheet of paper, for this we use Gauss's law. Let us use as a Gaussian surface a cylinder with faces parallel to the sheet
Ф = ∫ E . dA =
/ε₀
the electric field lines are perpendicular to the sheet, therefore they are parallel to the normal of the area, which reduces the scalar product to the algebraic product
E A = q_{int} /ε₀
area let's use the concept of density
σ = q_{int}/ A
q_{int} = σ A
E = σ /ε₀
as the leaf emits bonnet towards both sides, for only one side the field must be
E = σ / 2ε₀
we substitute in equation 1 and integrate
V = - σ x / 2ε₀
V = - x ( σ / 2ε₀)
if the area of the sheeta is 100 cm² = 10⁻² m²
V = - x (10⁻²/(2 8.85 10⁻¹²) = - x ( 5.6 10⁻¹⁰)
x = 1 cm V = -1 V
x = 2cm V = -2 V
This value is relative to the loaded sheet if we combine our reference system the values are inverted
V ’= V (inf) - V
x = 1 V = 5
x = 2 V = 4
x = 3 V = 3
These surfaces are perpendicular to the electric field lines, so they are parallel to the sheet.
In the attachment we can see a schematic representation of the equipotential surfaces
b) From the equation we can see that the equipotential surfaces are parallel to the sheet and equally spaced
c) parallel to the flat sheet of paper