At the highest point: kinetic energy is 0 due to the speed is 0
So the total mechanical energy is 20
Assume no frictions present, then the mechanical energy is conserved
So at the lowest point, kinetic energy = mechanical energy - potential energy
Answer will be 20 - 0.5 = 19.5 J
The answer is a buzzer. hope this helps. this is the answer because it use electricity to make the sound please award brainliest
Potential energy<span> is the </span>energy<span> that is stored in an object due to its position relative to some zero position. It is calculated by the expression PE = mgh where mg is the weight of the book and h is the height. It is calculated as follows:
PE = 50(1) = 50 J
</span>PE = 50(1.5) = 75 J
PE = 50(2) = 100 J
Answer:
Total energy is constant
Explanation:
The laws of thermodynamics state that thermal energy (heat) is always transferred from a hot body (higher temperature) to a cold body (lower temperature).
This is because in a hot body, the molecules on average have more kinetic energy (they move faster), so by colliding with the molecules of the cold body, they transfer part of their energy to them. So, the temperature of the hot body decreases, while the temperature of the cold body increases.
This process ends when the two bodies reach the same temperature: we talk about thermal equilibrium.
In this problem therefore, this means that the thermal energy is transferred from the hot water to the cold water.
However, the law of conservation of energy states that the total energy of an isolated system is constant: therefore here, if we consider the hot water + cold water as an isolated system (no exchange of energy with the surroundings), this means that their total energy remains constant.