First, we need to find the number of protons, which is the total mass divided by the mass of one proton:

protons
Then, the total charge is the number of protons times the charge of a single proton:
If you have (1 x 10⁹) cubic meters of volume, and 1/2 gram of mass
in each cubic meter, then you have
(1/2 x 10⁹) grams = (5 x 10⁸) grams = (5 x 10⁵) kilograms of mass .
On Earth, that mass weighs 4,900,000 newtons .
(about 1,102,300 pounds)
(about 551 tons)
Answer:
The ball would have landed 3.31m farther if the downward angle were 6.0° instead.
Explanation:
In order to solve this problem we must first start by doing a drawing that will represent the situation. (See picture attached).
We can see in the picture that the least the angle the farther the ball will go. So we need to find the A and B position to determine how farther the second shot would go. Let's start with point A.
So, first we need to determine the components of the velocity of the ball, like this:






we pick the positive one, so it takes 0.317s for the ball to hit on point A.
so now we can find the distance from the net to point A with this time. We can find it like this:



Once we found the distance between the net and point A, we can similarly find the distance between the net and point B:







t= -0.9159s or t=0.468s
we pick the positive one, so it takes 0.468s for the ball to hit on point B.
so now we can find the distance from the net to point B with this time. We can find it like this:



So once we got the two distances we can now find the difference between them:

so the ball would have landed 3.31m farther if the downward angle were 6.0° instead.
The First Law describes how an object acts when no force is acting upon it. So, rockets stay still until a force is applied to move them. Likewise, once they're in motion, they won't stop until a force is applied. Newton's Second Law tells us that the more mass an object has, the more force is needed to move it. A larger rocket will need stronger forces (eg. more fuel) to make it accelerate. The space shuttles required seven pounds of fuel for every pound of payload they carry. Newton's Third Law states that "every action has an equal and opposite reaction". In a rocket, burning fuel creates a push on the front of the rocket pushing it forward.
Answer:

Explanation:
The change in kinetic energy will be simply the difference between the final and initial kinetic energies: 
We know that the formula for the kinetic energy for an object is:

where <em>m </em>is the mass of the object and <em>v</em> its velocity.
For our case then we have:

Which for our values is:
