1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
HACTEHA [7]
3 years ago
11

Ammonia enters an adiabatic compressor operating at steady state as saturated vapor at 300 kPa and exits at 1400 kPa, 140◦C. Kin

etic and potential energy effects are negligible. Determine:
a. power input required [kJ/kg]
b. isentropic compressor efficiency
c. rate of entropy production per unit mass [kJ/kg K] in the compressor

Engineering
1 answer:
hammer [34]3 years ago
8 0

Answer:

a. 149.74 KJ/KG

b. 97.9%

c. 0.81 kJ/kg K

Explanation:

You might be interested in
When do design engineers start on the design improvement step?
ArbitrLikvidat [17]

Answer:

  as soon as there is a design to improve

Explanation:

As a design engineer, I started on the "design improvement" step as soon as I had an initial conceptual design.

__

Then, I started that step again when my boss told me, "make it better."

_____

The more interesting question is, "when do you <em>stop</em> the design improvement step?" (Judging by the constant barrage of software updates, that answer is, "never.")

8 0
2 years ago
A well-designed product will increase?​
Colt1911 [192]

Answer:

true

Explanation:

A well designed product will increase in sells and in stock.

8 0
1 year ago
A four-cylinder, four-stroke internal combustion engine has a bore of 3.7 in. and a stroke of 3.4 in. The clearance volume is 16
Bad White [126]

Answer:

the net work per cycle \mathbf{W_{net} = 0.777593696}  Btu per cycle

the power developed by the engine, W = 88.0144746 hp

Explanation:

the information given includes;

diameter of the four-cylinder bore = 3.7 in

length of the stroke = 3.4 in

The clearance volume = 16% = 0.16

The cylindrical volume V_2 = 0.16 V_1

the crankshaft N rotates at a speed of  2400 RPM.

At the beginning of the compression , temperature T_1 = 60 F = 519.67 R    

and;

Otto cycle with a pressure =  14.5 lbf/in² = (14.5 × 144 ) lb/ft²

= 2088 lb/ft²

The maximum temperature in the cycle is 5200 R

From the given information; the change in volume is:

V_1-V_2 = \dfrac{\pi}{4}D^2L

V_1-0.16V_1= \dfrac{\pi}{4}(3.7)^2(3.4)

V_1-0.16V_1= 36.55714291

0.84 V_1 =36.55714291

V_1 =\dfrac{36.55714291}{0.84 }

V_1 =43.52040823 \ in^3 \\ \\  V_1 = 43.52 \ in^3

V_1 = 0.02518 \ ft^3

the mass in air ( lb) can be determined by using the formula:

m = \dfrac{P_1V_1}{RT}

where;

R = 53.3533 ft.lbf/lb.R°

m = \dfrac{2088 \ lb/ft^2 \times 0.02518 \ ft^3}{53.3533 \ ft .lbf/lb.^0R  \times 519 .67 ^0 R}

m = 0.0018962 lb

From the tables  of ideal gas properties at Temperature 519.67 R

v_{r1} =158.58

u_1 = 88.62 Btu/lb

At state of volume 2; the relative volume can be determined as:

v_{r2} = v_{r1}  \times \dfrac{V_2}{V_1}

v_{r2} = 158.58 \times 0.16

v_{r2} = 25.3728

The specific energy u_2 at v_{r2} = 25.3728 is 184.7 Btu/lb

From the tables of ideal gas properties at maximum Temperature T = 5200 R

v_{r3} = 0.1828

u_3 = 1098 \ Btu/lb

To determine the relative volume at state 4; we have:

v_{r4} = v_{r3} \times \dfrac{V_1}{V_2}

v_{r4} =0.1828 \times \dfrac{1}{0.16}

v_{r4} =1.1425

The specific energy u_4 at v_{r4} =1.1425 is 591.84 Btu/lb

Now; the net work per cycle can now be calculated as by using the following formula:

W_{net} = Heat  \ supplied - Heat  \ rejected

W_{net} = m(u_3-u_2)-m(u_4 - u_1)

W_{net} = m(u_3-u_2- u_4 + u_1)

W_{net} = m(1098-184.7- 591.84 + 88.62)

W_{net} = 0.0018962 \times (1098-184.7- 591.84 + 88.62)

W_{net} = 0.0018962 \times (410.08)

\mathbf{W_{net} = 0.777593696}  Btu per cycle

the power developed by the engine, in horsepower. can be calculated as follows;

In the  four-cylinder, four-stroke internal combustion engine; the power developed by the engine can be calculated by using the expression:

W = 4 \times N'  \times W_{net

where ;

N' = \dfrac{2400}{2}

N' = 1200 cycles/min

N' = 1200 cycles/60 seconds

N' = 20 cycles/sec

W = 4 × 20 cycles/sec ×  0.777593696

W = 62.20749568 Btu/s

W = 88.0144746 hp

8 0
2 years ago
The inner surface of a hollow cylinder is subjected to tangential and axial stresses of 40,000 and 24,000 psi, respectively. Det
Furkat [3]

Answer:

15,000 psi

Explanation:

The solution / solving is attach below.

5 0
3 years ago
Question
Leto [7]

Answer:

True

Explanation:

The CNC is the primary interface between the machine operator and the machine.

4 0
2 years ago
Other questions:
  • A long homogeneous resistance wire of radius ro = 5 mm is being used to heat the air in a room by the passage of electric curren
    15·1 answer
  • In highways the far left lane is usually the _____
    11·2 answers
  • Given below are the measured streamflows in cfs from a storm of 6-hour duration on a stream having a drainage area of 185 mi^2.
    11·1 answer
  • 2. Ang sangay na nagbibigay-kahulugan sa mga batas ng bansane
    8·1 answer
  • Does somebody know how to do this?
    7·1 answer
  • The annual average of solar photovoltaic energy in Phoenix is 6,720
    8·1 answer
  • A 360 kg/min stream of steam enters a turbine at 40 bar pressure and 100 degrees of superheat. The steam exits the turbine as a
    14·1 answer
  • Pls help me it’s due today
    8·1 answer
  • Help me with this for brainiest:)
    8·1 answer
  • Along with refining craft skills another way to increase the odds for career advancement is to
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!