Answer:
Option (d) 2 min/veh
Explanation:
Data provided in the question:
Average time required = 60 seconds
Therefore,
The maximum capacity that can be accommodated on the system, μ = 60 veh/hr
Average Arrival rate, λ = 30 vehicles per hour
Now,
The average time spent by the vehicle is given as
⇒ 
thus,
on substituting the respective values, we get
Average time spent by the vehicle = 
or
Average time spent by the vehicle = 
or
Average time spent by the vehicle = 
or
Average time spent by the vehicle =
hr/veh
or
Average time spent by the vehicle =
min/veh
[ 1 hour = 60 minutes]
thus,
Average time spent by the vehicle = 2 min/veh
Hence,
Option (d) 2 min/veh
Answer:
a) 3.607 m
b) 1.5963 m
Explanation:
See that attached pictures for explanation.
The largest tensile force that can be applied to the cables given a rod with diameter 1.5 is 2013.15lb
<h3>The static equilibrium is given as:</h3>
F = P (Normal force)
Formula for moment at section
M = P(4 + 1.5/2)
= 4.75p
Solve for the cross sectional area
Area = 
d = 1.5

= 1.767 inches²
<h3>Solve for inertia</h3>

= 0.2485inches⁴
Solve for the tensile force from here

30x10³ = 
30000 = 14.902 p
divide through by 14.902
2013.15 = P
The largest tensile force that can be applied to the cables given a rod with diameter 1.5 is 2013.15lb
Read more on tensile force here: brainly.com/question/25748369