Answer:
i think its A. increasing research to find alternative natural resources for the future
Answer:
11.6 mm
Explanation:
With a factor of safety of 5 and a yield strength of 900 MPa the admissible stress is:
σadm = strength / fos
σadm = 900 / 5 = 180 MPa
The stress is the load divided by the section:
σ = P / A
σ = 4*P / (π*d^2)
Rearranging:
d^2 = 4*P / (π*σ)


Answer:
14.506°C
Explanation:
Given data :
flow rate of water been cooled = 0.011 m^3/s
inlet temp = 30°C + 273 = 303 k
cooling medium temperature = 6°C + 273 = 279 k
flow rate of cooling medium = 0.02 m^3/s
Determine the outlet temperature
we can determine the outlet temperature by applying the relation below
Heat gained by cooling medium = Heat lost by water
= ( Mcp ( To - 6 ) = Mcp ( 30 - To )
since the properties of water and the cooling medium ( water ) is the same
= 0.02 ( To - 6 ) = 0.011 ( 30 - To )
= 1.82 ( To - 6 ) = 30 - To
hence To ( outlet temperature ) = 14.506°C
Answer:
The output of a NOR gate is LOW whenever one or more inputs are HIGH. The output of an XOR gate is HIGH whenever the two inputs are different. The output of an XNOR gate is HIGH whenever the two inputs are identical
Answer:
Copy MATLAB code to plot the magnitude of magnetic field strength with respect to z on the axis of solenoid:
z=-20:0.01:20;
H=120.*(((20-(2.*z))./sqrt((20-(2.*z)).^2+100))+((20+(2.*z))./sqrt((20+(2.*z)).^2+100)));
plot(z,H)
title('plot of |H| vs z along the axis of solenoid')
ylabel('Magnitude of magnetic field 'H")
xlabel('position on axis of solenoid 'z")
Explanation:
full explanation is attached as picture and the resultant plot also.