You would use distributive property 5x(2×+x)+50
Answer:

Step-by-step explanation:
By applying the concept of calculus;
the moment of inertia of the lamina about one corner
is:

where :
(a and b are the length and the breath of the rectangle respectively )


![I_{corner} = \rho [\frac{bx^3}{3}+ \frac{b^3x}{3}]^ {^ a} _{_0}](https://tex.z-dn.net/?f=I_%7Bcorner%7D%20%3D%20%20%5Crho%20%5B%5Cfrac%7Bbx%5E3%7D%7B3%7D%2B%20%5Cfrac%7Bb%5E3x%7D%7B3%7D%5D%5E%20%7B%5E%20a%7D%20_%7B_0%7D)
![I_{corner} = \rho [\frac{a^3b}{3}+ \frac{ab^3}{3}]](https://tex.z-dn.net/?f=I_%7Bcorner%7D%20%3D%20%20%5Crho%20%5B%5Cfrac%7Ba%5E3b%7D%7B3%7D%2B%20%5Cfrac%7Bab%5E3%7D%7B3%7D%5D)

Thus; the moment of inertia of the lamina about one corner is 
Answer:
a) 0.00031
b) 0.0017
c) 0.31
d) 0.00018
Step-by-step explanation:
attached below is the detailed solution
Total number of 7-poker cards are 52P7 = 133784560
A) Determine the probabilities of Seven-card straight
probability of seven-card straight = 0.00031
B) Determine the probability of four cards of one rank and three of a different rank
P( four cards of one rank and three of different rank ) = 0.0017
C) Determine probability of three cards of one rank and two cards of each two different ranks
P( three cards one rank and two cards of two different ranks ) = 0.31
D) Determine probability of two cards of each of three different ranks and a card of a fourth rank
P ( two cards of each of three different ranks and a card of fourth rank ) = 0.00018
Answer:
2/10
Step-by-step explanation:
First you - 20 from 40 (aka 2/10 - 4/10) and you will get 20 (aka 2/10).