The initial concentration of solution is 0.0693 M. The volume of solution taken is 10 mL and it is diluted to a final volume of 500 mL.
According to dilution law, the product of initial concentration and volume is equal to the product of final concentration and volume as follows:

Here,
is initial concentration,
is final concentration,
is initial volume and
is final volume.
Rearranging to calculate final concentration,

Putting the values,

Therefore, concentration of the resulting solution is 0.001386 M.
Arm. The center is the yellow, in the very middle. I hope this helps.
Answer:
Yes, Mass is conserved.
Explanation:
Every chemical reactions obey the law of conservation of mass. The law of conservation of mass states that in chemical reactions, mass is always constant.
Equation:
2Na + Cl₂ → 2NaCl
From the equation above, one can observe that the reaction started using 2 atoms of Na and it produced 2 atoms of the same element in NaCl. A molecule of Cl produced 2 atoms of Cl in the NaCl
Design a simple experiment to support your answer:
Aim: To demonstrate the law of conservation of mass
One Na atom weighs 23g
Two Na atom will weigh 2 x 23 = 46g
1 atom of Cl is 35.5g
1 molecule of Cl containing two atoms of Cl will weigh 2 x 35.5 = 71g
Total mass of reactants = mass of 2Na + 1Cl₂ = (46 + 71)g = 117g
On the product side, Mass of 1 NaCl = 23+ 35.5 = 58.5g
Two moles of NaCl will give 2 x 58.5g = 117g
Since the mass on both side is the same, one can say mass is conserved.
Answer:
just read the explanation.
Explanation:
1.Maintaining a healthy, perennial plant cover.
2.Mulching.
3.Planting a cover crop – such as winter rye in vegetable gardens.
4.Placing crushed stone, wood chips, and other similar materials in heavily used areas where vegetation is hard to establish and maintain.
Hope this helps. :)
You'll need the specific heat capacity of aluminium to solve this question.
H=(0.005)(37-22)(specific heat capacity of aluminium)