Boiling points are raised by hydrogen bonds because they make different molecules desire to "attach" to one another, which requires more energy to do so. In water, for instance, the hydrogen proton is in a state that resembles ionization because the connections between oxygen and hydrogen, while covalent, are strongly polar. The oxygen also receives a partial negative charge. Therefore, hydrogen bonds are formed when the electro-positive H in one molecule is strongly electrostatically attracted to the electro-negative O in nearby molecules. Despite being weak links, they are powerful enough to significantly alter the liquid's characteristics.
Thanks!
>> ROR
The planetary temperature energy balance is obtained by radiating back the absorbed radiation energy from outer-space, by the planet and thus acquiring thermal equilibrium.
What is the process of attaining thermal equilibrium by Earth?
The Stefan-Boltzmann law states that the more the temperature a planet has, the more it will radiate out to reach thermal equilibrium.
We know that outer space contains large masses of radiative energy freely distributed in its vast expanse. A small fraction of this energy is absorbed by the Earth through the atmosphere, surface land, clouds etc.
Now, radiative balance is achieved when a planet's surface continuously warms up until it reaches its peak at which point the same amount of absorbed energy can then be radiated back to space. The relative amount of energy radiated back by a planet is dependent upon the size of the planet.
A colder planet relatively absorbs lower amount of radiation energy from space. In some time, as the planet heats up enough, the energy is radiated back to the space attaining thermal equilibrium.
Learn more about Stefan-Boltzmann law here:
<u>brainly.com/question/14919749</u>
#SPJ4
Answer:
false
Explanation:
sound travels slower than light. that is why we see lightning before we hear the thunder
Answer:W = 1.23×10^-6BTU
Explanation: Work = Surface tension × (A1 - A2)
W= Surface tension × 3.142 ×(D1^2 - D2^2)
Where A1= Initial surface area
A2= final surface area
Given:
D1=0.5 inches , D2= 3 inches
D1= 0.5 × (1ft/12inches)
D1= 0.0417 ft
D2= 3 ×(1ft/12inches)
D2= 0.25ft
Surface tension = 0.005lb ft^-1
W = [(0.25)^2 - (0.0417)^2]
W = 954 ×10^6lbf ft × ( 1BTU/778lbf ft)
W = 1.23×10^-6BTU
Answer:
I think it has to do something with their ionizations... not entirely sure though.
Explanation: