Answer:
0.785 m/s
Explanation:
Hi!
To solve this problem we will use the equation of motion of the harmonic oscillator, <em>i.e.</em>
- (1)
- (1)
The problem say us that the spring is released from rest when the spring is stretched by 0.100 m, this condition is given as:


Since cos(0)=1 and sin(0) = 0:


We get

Now it say that after 0.4s the weigth reaches zero speed. This will happen when the sping shrinks by 0.100. This condition is written as:

Since

This is the same as:

We know that cosine equals to -1 when its argument is equal to:
(2n+1)π
With n an integer
The first time should happen when n=0
Therefore:
π = 0.4ω
or
ω = π/0.4 -- (2)
Now, the maximum speed will be reached when the potential energy is zero, <em>i.e. </em>when the sping is not stretched, that is when x = 0
With this info we will know at what time it happens:

The first time that the cosine is equal to zero is when its argument is equal to π/2
<em>i.e.</em>

And the velocity at that time is:

But sin(π/2) = 1.
Therefore, using eq(2):

And so:

Answer:
option D
Explanation:
given,
length of the pipe, L = 0.96 m
Speed of sound,v = 345 m/s
Resonating frequency when both the end is open

n is the Harmonic number
2nd overtone = 3rd harmonic
so, here n = 3
now,

f = 540 Hz
The common resonant frequency of the string and the pipe is closest to 540 Hz.
the correct answer is option D
Mass per cubic metre so kg/m3. Temperature may give different results.
Answer:Dissociative Identity Disorder
Explanation:I don't say you have to mark my ans brainliest but my friend if it has really helped you don't forget to thank me...