Answer: nucleons
Explanation:
The nucleons are the particles that constitue the nuclei of the atoms. Those are protons and neutrons.
They are not elementary particles (quarks are the elementary particles that form both protons and neutrons).
Protons are the particles that define the elements. Any different elements have different number of protons. H has one proton, He has 2 protons, Li has three protons, Na has 11 protons, U has 92 protons.
Protons are positively charged and the number of protons in any neutral atom is equal to the number of electrons (the electrons, which are elementary negatively charged particles, are around the nucleous).
Neutrons have not charge and are responsible for the stability of the nuclei. They are fundamental to avoid that the repulsion forces between the positively charged protons ends causing the collapse of the nuclei.
You could use another word for change can be variable witch means change and if you times the one two more times then you would get four because two time two would be four and times the one would be four.
Density is calculated as mass divided by volume. If we are given an ice cube of side length 8.00 cm, then the volume of the cube is equivalent to (8.00 cm)^3 = 512 cm^3. Since we have a given mass of 476 g, we can divide:
476 g / 512 cm^3 = 0.930 g/cm^3
So the density of the sample of ice is 0.930 g/cm^3.
Answer:
At the end of meiosis, there are four cells, each with 23 chromosomes, for a total of 92 chromosomes split between the four cells.
Explanation:
During meiosis, a diploid cell (46 chromosomes) replicates its DNA (making 92 chromosomes) then undergoes two cell divisions to generate four haploid cells (23 chromosomes).
These haploid cells are the gametes which, during fertilization, fuse to become a zygote with 46 chromosomes.
Answer:
The percentage deviation is
%
Explanation:
From the question we are told that
The concentration is of the solution is 
The true absorbance A = 0.7526
The percentage of transmittance due to stray light
% 
Generally Absorbance is mathematically represented as

Where T is the percentage of true transmittance
Substituting value



%
The Apparent absorbance is mathematically represented

Substituting values


= 0.7385
The percentage by which apparent absorbance deviates from known absorbance is mathematically evaluated as


%
Since Absorbance varies directly with concentration the percentage deviation of the apparent concentration from know concentration is
%