Explanation:
Mass of solute = 10.0 g
mass of solvent(water) = m
Volume of solvent( water) = v = 100.0 mL
Density of water= d = 


Mass of solution(M) = Mass of solute + mass of solvent
M = 10.0 g + 100.0 g = 110.0 g
Volume of the solution = V = 113 mL
Density of the solution = D

The density of the solution is 0.9734 g/ml.
Moles of phosphoric acid = 
Moles of water = 
Mole fraction of phosphoric acid =


Mole fraction of water =


![[Molarity]=\frac{\text{Moles of solute}}{\text{Volume of solution(L)}}](https://tex.z-dn.net/?f=%5BMolarity%5D%3D%5Cfrac%7B%5Ctext%7BMoles%20of%20solute%7D%7D%7B%5Ctext%7BVolume%20of%20solution%28L%29%7D%7D)
Moles of phosphoric acid = 0.1020 mol
Volume of the solution = V = 113 mL = 0.113 L ( 1 mL = 0.001 L)
Molarity of the solution :

![[Molality]=\frac{\text{Moles of solute}}{\text{Mass of solvent(kg)}}](https://tex.z-dn.net/?f=%5BMolality%5D%3D%5Cfrac%7B%5Ctext%7BMoles%20of%20solute%7D%7D%7B%5Ctext%7BMass%20of%20solvent%28kg%29%7D%7D)
Moles of phosphoric acid = 0.1020 mol
Mass of solvent(water) = m =100.0 g = 0.100 kg ( 1 g = 0.001 kg)
Molality of the solution :

H₂O would be the limiting reactant.
Balanced chemical equation:
6CO₂ + 6H₂O + light equation → C₆H₁₂O₆ + 6O₂
The amount of product that can be created is constrained by the reactant that is consumed first in a chemical reaction, commonly referred to as the limiting reactant (or limiting reagent).
Given
No. of moles of CO₂ = 18.6
Mass of H₂O = 2.38 × 10² g = 238g
No. of moles of H₂O = Given mass/ Molar mass
= 238 / 18 = 13.22 moles
Moles of H₂O = 13.22
According to the balanced chemical equation
6 moles of CO₂ react with 6 moles of H₂O
So the reactant that has less number of moles will be consumed first.
As the No. of moles of H₂O < No. of moles of CO₂
So, H₂O is the limiting reactant with 13.22 moles.
Hence, H₂O would be the limiting reactant.
Learn more about limiting reactant here brainly.com/question/14222359
#SPJ1
Answer:
- <em>During the polymerization of a 20 monomer-long cellulose molecule,</em> <u>19 molecules of water are released.</u>
<u></u>
Explanation:
In simple terms, <em>cellulose </em>is the biopolymer formed by many glucose units. This is cellulose is the polymer and glucose is the monomer.
To have a <em>20 monomer-long cellulose molecule</em>, 20 monomers have been chemically bonded by reacting 19 times, as it is explained in the next paragrpahs, and so 19 molecules of water have been released.
You can imaging the polymerization process as a step-by-step reaction in which the first step is the condensation reaction of one glucose molelecule to produce a 2 monomer-long chain, with the release of one molecule of water: the second step would be the condensation reaction between the 2 monomer-long chain with another glucose molecule, with the release of an additional molecule of water, and so on, until 19 condensation reactions happen, to obtain the 20 monomer-long cellulose molecule.
Condensation is the loss of water in a chemical reaction.
When two glucose molecules react together, condensation occurs. One OH group from each glucose molecule come together, the OH from one glucose molecule combines with the H part of the OH from the other glucose molecule, to form H₂O (water that is released).
The two glucose molecules (monomers) will form one bigger molecule where the two glucose monomers are bonded through the oxygen atom that did not form part of the water molecule released.
Then, a 20-monomer chain means 19 condenstation reactions, with the release of 19 molecules of water.
Considering the definition of pOH and strong base, the pOH of the aqueous solution is 1.14
The pOH (or potential OH) is a measure of the basicity or alkalinity of a solution and indicates the concentration of ion hydroxide (OH-).
pOH is expressed as the logarithm of the concentration of OH⁻ ions, with the sign changed:
pOH= - log [OH⁻]
On the other hand, a strong base is that base that in an aqueous solution completely dissociates between the cation and OH-.
LiOH is a strong base, so the concentration of the hydroxide will be equal to the concentration of OH-. This is:
[LiOH]= [OH-]= 0.073 M
Replacing in the definition of pOH:
pOH= -log (0.073 M)
<u><em>pOH= 1.14 </em></u>
In summary, the pOH of the aqueous solution is 1.14
Learn more:
The solubility of PbBr₂(s) with the presence of 0.500 M of KBr is
2.64 x 10⁻⁵ M.