Answer:
6.46 × 10⁻¹¹ M
Explanation:
Step 1: Given data
pH of the solution: 3.81
Step 2: Calculate the pOH of the solution
We will use the following expression.
pH + pOH = 14.00
pOH = 14.00 - pH = 14.00 - 3.81 = 10.19
Step 3: Calculate the concentration of OH⁻ ions
We will use the definition of pOH.
pOH = -log [OH⁻]
[OH⁻] = antilog -pOH = antilog -10.19 = 6.46 × 10⁻¹¹ M
<u>Answer:</u> The mass of sulfuric acid present in 60 mL of solution is 34.1 grams
<u>Explanation:</u>
We are given:
44 % (m/m) solution of sulfuric acid. This means that 44 grams of sulfuric acid is present in 100 grams of solution.
To calculate volume of a substance, we use the equation:

Density of solution = 1.343 g/mL
Mass of solution = 100 g
Putting values in above equation, we get:

To calculate the mass of sulfuric acid present in 60 mL of solution, we use unitary method:
In 77.46 mL of solution, mass of sulfuric acid present is 44 g
So, in 60 mL of solution, mass of sulfuric acid present will be = 
Hence, the mass of sulfuric acid present in 60 mL of solution is 34.1 grams
Answer:
option "B" is correct (substance 2)
Answer:
Explanation:
The nucleus (center) of the atom contains the protons (positively charged) and the neutrons (no charge). The outermost regions of the atom are called electron shells and contain the electrons (negatively charged). Atoms have different properties based on the arrangement and number of their basic particles.