<span>The statement is TRUE. Water does have potential energy at the top of a slope. The reason why is that potential energy is energy possessed by a body based on its position relative to a zero point. In this case, water at the top of the slope is at an elevation above ground (zero point). The energy is not kinetic (moving) energy since the water is not moving.</span>
Answer: 
Explanation:
Given
Mass of the elevator is 
Time period of ascension 
cruising speed 
Distance moved by elevator during this time
Suppose Elevator starts from rest

Distance moved

Gain in Potential Energy is

Average power during this period is

The answer is C! I knew this way before taking the test
Answer:
the mass of the box is 51.98 kg.
Explanation:
Given;
applied horizontal force, F = 450 N
coefficient of friction, μ = 0.795
constant velocity, v = 1.2 m/s
At constant velocity, the acceleration of the object is zero and the net force will be zero.
Therefore, the mass of the box is 51.98 kg.
Answer:
The fastest satellite must change orbit
The most massive body (m₁) transfers more momentum to the satellite,
Explanation:
For this problem we consider a system formed by the satellite and each of the bodies with which it collides, in this system the forces during the collision are internal, the amount of movement must be conserved. Let's write the momentum is two instants
Most massive body (m1)
initial. Before the crash
p₀₁ = M v + m₁ v₁
after the crash
= M v´ + m₁ v₁´
how momentum is conserved
p₀ = p_{f}
Lighter body (m2)
p₀₂ = M v + m₂ v₂
p_{f2} = M v´ + m₂ v₂´
Let's clarify that the speed of the satellite and the object do not have the same direction, in general these shocks are elastic.
We can see that p₀₁> p₀₂
Let us analyze the two cases when the body collides, The most massive body (m₁) transfers more momentum to the satellite, therefore there must be a greater change in its momentum and velocity.
The fastest satellite must change orbit, thus rotating at a different distance from Earth