Answer:
<h2>9.375Nm</h2>
Explanation:
The formula for calculating torque τ = Frsin∅ where;
F = applied force (in newton)
r = radius (in metres)
∅ = angle that the force made with the bar.
Given F= 25N, r = 0.75m and ∅ = 30°
torque on the bar τ = 25*0.75*sin30°
τ = 25*0.75*0.5
τ = 9.375Nm
The torque on the bar is 9.375Nm
Given:
F = 39 N, the force applied
t = 2 s, the time interval in which the force is applied.
By definition, the impulse is

Answer: 78 N-s
Hi there!
We can begin by deriving the equation for how long the ball takes to reach the bottom of the cliff.

There is NO initial vertical velocity, so:

Rearrange to solve for time:

Plug in the given height and acceleration due to gravity (g ≈ 9.8 m/s²)

Now, use the following for finding the HORIZONTAL distance using its horizontal velocity:

What’s the question? Is it true or false?