1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
aleksley [76]
3 years ago
9

A battery-operated car utilizes a 12.0 V system. Find the charge the batteries must be able to move in order to accelerate the 7

50 kg car from rest to 25.0 m/s, make it climb a 2.00×102 m high hill, and then cause it to travel at a constant 25.0 m/s by exerting a 5.00×102 N force for an hour.
Physics
1 answer:
Yuliya22 [10]3 years ago
3 0

Answer:

3894531 coulombs

Explanation:

1 hour = 3600 seconds

Let g = 10m/s2

The distance that the car travel at 25 m/s over an hour is

s = 25 * 3600 = 90000 m

The total mechanical energy of the car is the sum of its kinetic energy to reach 25 m/s, its potential energy to climb up 200m high hill and it work to travel a distance of s = 90000m with F = 500 N force:

\sum E = E_k + E_p + E_W

\sum E = mv^2/2 + mgh + Fs

\sum E = 750*25^2/2 + 750*10*200 + 500*90000 = 46734375 J

This energy is drawn from the battery over an hour (3600 seconds), so its power must be

P = E / t = 46734375/3600 = 12982 W

The system is 12V so its current is

I = P/U = 12982 / 12 = 1081.8 A or 1081.8 Coulombs/s

The the total charge it needs for 1 hour (3600 s) is

C = 1081.8 * 3600 = 3894531 coulombs

You might be interested in
Can you explain why number 3 is correct?
lukranit [14]
No waves because Q19 waves would going at the surface at regions
7 0
2 years ago
A uniform plank 8.00 m in length with mass 50.0 kg is supported at two points located 1.00 m and 5.00 m, respectively, from the
andreev551 [17]

To solve the problem it is necessary to use Newton's second law and statistical equilibrium equations.

According to Newton's second law we have to

F = mg

where,

m= mass

g = gravitational acceleration

For the balance to break, there must be a mass M located at the right end.

We will define the mass m as the mass of the body, located in an equidistant center of the corners equal to 4m.

In this way, applying the static equilibrium equations, we have to sum up torques at point B,

\sum \tau = 0

Regarding the forces we have,

3Mg-1mg=0

Re-arrange to find M,

M = \frac{m}{3}

M = \frac{50}{3}

M = 16.67Kg

Therefore the maximum additional mass you could place on the right hand end of the plank and have the plank still be at rest is 16.67Kg

8 0
3 years ago
A toy car having mass m = 1.10 kg collides inelastically with a toy train of mass M = 3.55 kg. Before the collision, the toy tra
kkurt [141]

Answer:

V_{ft}= 317 cm/s

ΔK = 2.45 J

Explanation:

a) Using the law of the conservation of the linear momentum:

P_i = P_f

Where:

P_i=M_cV_{ic} + M_tV_{it}

P_f = M_cV_{fc} + M_tV_{ft}

Now:

M_cV_{ic} + M_tV_{it} = M_cV_{fc} + M_tV_{ft}

Where M_c is the mass of the car, V_{ic} is the initial velocity of the car, M_t is the mass of train, V_{fc} is the final velocity of the car and V_{ft} is the final velocity of the train.

Replacing data:

(1.1 kg)(4.95 m/s) + (3.55 kg)(2.2 m/s) = (1.1 kg)(1.8 m/s) + (3.55 kg)V_{ft}

Solving for V_{ft}:

V_{ft}= 3.17 m/s

Changed to cm/s, we get:

V_{ft}= 3.17*100 = 317 cm/s

b) The kinetic energy K is calculated as:

K = \frac{1}{2}MV^2

where M is the mass and V is the velocity.

So, the initial K is:

K_i = \frac{1}{2}M_cV_{ic}^2+\frac{1}{2}M_tV_{it}^2

K_i = \frac{1}{2}(1.1)(4.95)^2+\frac{1}{2}(3.55)(2.2)^2

K_i = 22.06 J

And the final K is:

K_f = \frac{1}{2}M_cV_{fc}^2+\frac{1}{2}M_tV_{ft}^2

K_f = \frac{1}{2}(1.1)(1.8)^2+\frac{1}{2}(3.55)(3.17)^2

K_f = \frac{1}{2}(1.1)(1.8)^2+\frac{1}{2}(3.55)(3.17)^2

K_f = 19.61 J

Finally, the change in the total kinetic energy is:

ΔK = Kf - Ki = 22.06 - 19.61 = 2.45 J

4 0
3 years ago
If a clock expends 2 W of power from a 1.5 V battery what amount of current is supplying the clock?
wolverine [178]
1.3 A
If a clock expends 2 W of power from a 1.5 V battery, what amount of current is supplying
the clock?
solution
as we know
p=vi
i=p/v
=2/1.5
=1.3A
7 0
3 years ago
Why are electromagnets used in metal scrap yards?
Andrej [43]
Because the electromagnets can pick up magnetic material and move it around, hope this helps
8 0
3 years ago
Read 2 more answers
Other questions:
  • A concise definition of pair production
    5·1 answer
  • Do you think it is alright for a girl to try to win a race for a bike ride explain your answers
    12·2 answers
  • Please help with this assignment paper in science.
    14·1 answer
  • What is the difference between kinetic and mechanical energy?
    11·2 answers
  • a 0.05-kg starts from rest at a height of 0.95m. assuming no friction, what is the kinetic energy of the car when it reaches the
    7·1 answer
  • "when light travels from air into a piece of glass, a change in direction may occur. what is the name of this phenomenon
    14·2 answers
  • An explorer is caught in a whiteout (in which the snowfall is so thick that the ground cannot be distinguished from the sky) whi
    15·2 answers
  • Photosynthesis is an endothermic chemical reaction that forms sugars from carbon dioxide, water, and the sun's energy. Which of
    13·2 answers
  • Công thức dùng tính tần số dao động của con lắc lò xò
    6·1 answer
  • What does RADAR stand for?​
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!