No waves because Q19 waves would going at the surface at regions
To solve the problem it is necessary to use Newton's second law and statistical equilibrium equations.
According to Newton's second law we have to

where,
m= mass
g = gravitational acceleration
For the balance to break, there must be a mass M located at the right end.
We will define the mass m as the mass of the body, located in an equidistant center of the corners equal to 4m.
In this way, applying the static equilibrium equations, we have to sum up torques at point B,

Regarding the forces we have,

Re-arrange to find M,



Therefore the maximum additional mass you could place on the right hand end of the plank and have the plank still be at rest is 16.67Kg
Answer:

ΔK = 2.45 J
Explanation:
a) Using the law of the conservation of the linear momentum:

Where:


Now:

Where
is the mass of the car,
is the initial velocity of the car,
is the mass of train,
is the final velocity of the car and
is the final velocity of the train.
Replacing data:

Solving for
:

Changed to cm/s, we get:

b) The kinetic energy K is calculated as:
K = 
where M is the mass and V is the velocity.
So, the initial K is:



And the final K is:




Finally, the change in the total kinetic energy is:
ΔK = Kf - Ki = 22.06 - 19.61 = 2.45 J
1.3 A
If a clock expends 2 W of power from a 1.5 V battery, what amount of current is supplying
the clock?
solution
as we know
p=vi
i=p/v
=2/1.5
=1.3A
Because the electromagnets can pick up magnetic material and move it around, hope this helps