Answer: the sun's rays is one of the raw Materials recquired by plants to make food
Explanation:plants trap light used in splitting water into hydrogen ions and oxygen molecules
It seems that you have missed the given options for the given statement above whether it is true or false. But anyway, the correct answer would be TRUE. It is true that one <span>of the most effective ways to evaluate data is to try to replicate it. Hope that this answer will help you. </span>
Answer:
v = (10 i ^ + 0j ^) m / s, a = (0i ^ - 9.8 j ^) m / s²
Explanation:
This is a missile throwing exercise.
On the x axis there is no acceleration so the velocity on the x axis is constant
v₀ₓ = 10 m / s
On the y-axis velocity is affected by the acceleration of gravity, let's use the equation
v_y =
- g t
at the highest point of the trajectory the vertical speed must be zero
v_y = 0
therefore the velocity of the body is
v = (10 i ^ + 0j ^) m / s
the acceleration is
a = (0 i ^ - g j⁾
a = (0i ^ - 9.8 j ^) m / s²
When you look at this, you might not be sure which way to divide ...
Should you divide 6 by 5 or 5 by 6 ?
Here's a case where you can use your units to decide.
The question wants to know the 'period'. That's a length of time,
so the answer needs to have units of time.
If you divide 'cycles' be 'time', you'll get 'cycles/second'.
That's Hz. It's frequency, not time.
If you divide 'time' by 'cycles', you'll get 'seconds/cycle'.
That's time, and it's exactly the definition of 'period'.
Period = (6 seconds) / (5 cycles)
= (6 / 5) seconds/cycle
= 1.2 seconds
Answer:


Explanation:
Given:
Let mass of the particle B be, 
then the mass of particle A, 
Energy stored in the compressed spring, 
Now when the compression of the particles with the spring is released, the spring potential energy must get converted into the kinetic energy of the particles and their momentum must be conserved.
Kinetic energy:

.............................(1)
<u>Using the conservation of linear momentum:</u>

.............................(2)
Put the value of
from eq. (2) into eq. (1)

...........................(3)
<u>Now the kinetic energy of particle B:</u>



Put the value of
form eq. (3) into eq. (1):

<u>Now the kinetic energy of particle A:</u>
<u />
<u />
<u />
<u />
