Answer:
electric field E = (1 /3 e₀) ρ r
Explanation:
For the application of the law of Gauss we must build a surface with a simple symmetry, in this case we build a spherical surface within the charged sphere and analyze the amount of charge by this surface.
The charge within our surface is
ρ = Q / V
Q ’= ρ V
'
The volume of the sphere is V = 4/3 π r³
Q ’= ρ 4/3 π r³
The symmetry of the sphere gives us which field is perpendicular to the surface, so the integral is reduced to the value of the electric field by the area
I E da = Q ’/ ε₀
E A = E 4 πi r² = Q ’/ ε₀
E = (1/4 π ε₀) Q ’/ r²
Now you relate the fraction of load Q ’with the total load, for this we use that the density is constant
R = Q ’/ V’ = Q / V
How you want the solution depending on the density (ρ) and the inner radius (r)
Q ’= R V’
Q ’= ρ 4/3 π r³
E = (1 /4π ε₀) (1 /r²) ρ 4/3 π r³
E = (1 /3 e₀) ρ r
<span>Polymers are small molecular units joined together in large molecules.
hope this helps!</span>
Answer:
Not be changed
Option: D
<u>Explanation:</u>
The physical quantity which has both ‘magnitude and direction’ is called vector. These vectors are represented by a line and an arrow, <em>the line represent the magnitude and arrow represent the direction of the physical quantity</em>. The vectors are added and subtracted according to the direction of the vectors.
According to the vector law addition while adding vectors direction and length of the vector is not be changed.<em> If the length of the vector changed the magnitude is also changed while so, while adding vectors length must not be changed.
</em>
Answer:
All three pendulum will attain same velocity
Explanation:
All three pendulum will attain same velocity irrespective of their mass difference in isolated system (means where air drag are negligible) and at same length
As you know when velocity is calculated we can not take mass into account.