Answer: car 1 is going how fast
Explanation: no need to answer without speed I won't know distance.
Answer:
Explanation:
Time dilation formula is
T = T₀ / √ 1-v²/c²
T₀ is time elapsed in moving reference , T time elapsed in stationary reference.
Here T₀ = 1 second
T = 1/√ 1-0.9² = 1/.4358 = 2.3 second
So 2.3 second will pass for each second on moving reference.
The electric field of a very large (essentially infinitely large) plane of charge is given by:
E = σ/(2ε₀)
E is the electric field, σ is the surface charge density, and ε₀ is the electric constant.
To determine σ:
σ = Q/A
Where Q is the total charge of the sheet and A is the sheet's area. The sheet is a square with a side length d, so A = d²:
σ = Q/d²
Make this substitution in the equation for E:
E = Q/(2ε₀d²)
We see that E is inversely proportional to the square of d:
E ∝ 1/d²
The electric field at P has some magnitude E. Now we double the side length of the sheet while keeping the same amount of charge Q distributed over the sheet. By the relationship of E with d, the electric field at P must now have a quarter of its original magnitude:

Answer:
a) Tc = 750 [N] ;b) See the explanation below.
Explanation:
To solve this problem, we first need a graphical explanation of this, as well as knowing the corresponding questions. Therefore, a search was carried out in google, in the attached image we will find a graphical description of the problem.
b)
The solution of this type of problem corresponds to the use of Newton's third law, applying static which tells us that the sum of the forces in a system in equilibrium without movement must be equal to zero.
a)
In this way we can find by means of a sum of forces on the y axis equal to zero:
- 850 - 450 + 550 + Tc = 0
Tc = 750 [N]
Answer:
Look to the explanation
Explanation:
<u><em>Work done</em></u> is is the energy transferred to or from an object by means
of a force acting on the object.
Work is positive if energy transferred to the object, and work is
negative if energy transferred from the object.
<em>Work = Force in the direction motion of object × its displacement</em>

The SI unit of the work is joule (J)
<u><em>Power</em></u> is the rate of work
<em>Power = work done ÷ time taken</em>
Power = 
Displacement (s) ÷ time (t) = velocity (v)
<em>Power = Force × velocity</em>

The SI unit of the power is watt (w)