1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
marta [7]
2 years ago
15

a 10.0 kg sphere is released from rest in an ocean. as it falls, the water applies a resistive force r

Physics
1 answer:
dimaraw [331]2 years ago
4 0

The calculated coefficient of kinetic friction is 0.33125.'

The rate of kinetic friction the friction force to normal force ratio experienced by a body moving on a dry, uneven surface is known as k. The friction coefficient is the ratio of the normal force pressing two surfaces together to the frictional force preventing motion between them. Typically, it is represented by the Greek letter mu (). In terms of math, is equal to F/N, where F stands for frictional force and N for normal force.

given mass of the block=10 kg

spring constant k= 2250 Nm

now according to principal of conservation of energy we observe,

the energy possessed by the block initially is reduced by the friction between the points B and C and rest is used up in work done by the spring.

mgh= μ (mgl) +1/2 kx²

10 x 10 x 3= μ(600) +(1125) (0.09)

μ(600) =300 - 101.25

μ = 198.75÷600

μ =0.33125

The complete question is- A 10.0−kg block is released from rest at point A in Fig The track is frictionless except for the portion between point B and C, which has a length of 6.00m the block travels down the track, hits a spring of force constant 2250N/m, and compresses the spring 0.300m form its equilibrium position before coming to rest momentarily. Determine the coefficient of kinetic friction between the block and the rough surface between point Band (C)

Learn more about kinetic friction here-

brainly.com/question/13754413

#SPJ4

You might be interested in
B
SVEN [57.7K]

Answer:

Frequency = 1,550Hz

Explanation:

To solve this we can use the equation: f=\frac{v}{\lambda}

(frequency = velocity/wavelength).

We are given the information that the wavelength is 22cm and the speed is 340m/s. The first step is to make sure everything is in the correct units (SI units), and to convert them if needed. The SI Units for velocity and wavelength are m/s and m respectively. This means we need to convert 22cm into meters, which we can do by dividing by 100, (as there are 100cm in a meter). 22/100 = 0.22m

Now we can substitute these values into the formula and calculate to solve:

f=\frac{340}{0.22} \\\\f=1545.454...

Simplify to 3 significant figures:

f = 1,550Hz

(Which I believe is just below a G6 if you were interested)

Hope this helped!

4 0
3 years ago
The items in a mixture can be returned to their original form.<br> True<br> False
Grace [21]
I believe it’s false.
4 0
3 years ago
Read 2 more answers
A force of 265.1 N acts on an object to produce an acceleration of 14.52 m/s^2. What is the mass of the object?
astra-53 [7]

The answer is :


18.26


Hope I helped.

6 0
3 years ago
Read 2 more answers
If an object's kinetic energy is zero, what is its momentum?
hammer [34]
If the object's kinetic energy is zero, then due to in multiplication factor, it's momentum will also be equal to zero 'cause the velocity of the object must be Nil

In short, Your Answer would be: "Zero"

Hope this helps!
6 0
3 years ago
The rms (root-mean-square) speed of a diatomic hydrogen molecule at 50∘C is 2000 m/s. Note that 1.0 mol of diatomic hydrogen at
denis-greek [22]

Answer:

A) d. (1/4)(2000m/s) = 500 m/s

B) c. 4000 J

C) f. None of the above (2149.24 m/s)

Explanation:

A)

The translational kinetic energy of a gas molecule is given as:

K.E = (3/2)KT

where,

K = Boltzman's Constant = 1.38 x 1^-23 J/K

T = Absolute Temperature

but,

K.E = (1/2) mv²

where,

v = root mean square velocity

m = mass of one mole of a gas

Comparing both equations:

(3/2)KT = (1/2) mv²

v = √(3KT)/m  _____ eqn (1)

<u>FOR HYDROGEN:</u>

v = √(3KT)/m = 2000 m/s  _____ eqn (2)

<u>FOR OXYGEN:</u>

velocity of oxygen = √(3KT)/(mass of oxygen)  

Here,

mass of 1 mole of oxygen = 16 m

velocity of oxygen = √(3KT)/(16 m)

velocity of oxygen = (1/4) √(3KT)/m

using eqn (2)

<u>velocity of oxygen = (1/4)(2000 m/s) = 500 m/s</u>

B)

K.E = (3/2)KT

Since, the temperature is constant for both gases and K is also a constant. Therefore, the K.E of both the gases will remain same.

K.E of Oxygen = K.E of Hydrogen

<u>K.E of Oxygen = 4000 J</u>

C)

using eqn (2)

At, T = 50°C = 323 k

v = √(3KT)/m = 2000 m/s

m = 3(1.38^-23 J/k)(323 k)/(2000 m/s)²

m = 3.343 x 10^-27 kg

So, now for this value of m and T = 100°C = 373 k

v = √(3)(1.38^-23 J/k)(373 k)/(3.343 x 10^-27 kg)

<u>v = 2149.24 m/s</u>

<u></u>

8 0
4 years ago
Other questions:
  • You are pulling a child in a wagon. The rope handle is inclined upward at a 60∘ angle. The tension in the handle is 20 N.How muc
    7·1 answer
  • A common characteristic of sound waves is that they
    6·1 answer
  • What is a substance ?????
    13·1 answer
  • Which planets can never be seen at midnight? A. The Superior planets. B. The Inferior planets C. All planets can be seen at midn
    10·1 answer
  • How much work (in J) is required to expand the volume of a pump from 0.0 L to 2.7 L against an external pressure of 1.0 atm?
    7·1 answer
  • " when striking, the pike, a predatory fish, can accelerate from rest to a speed of 4.0 m/s in 0.11 s."
    5·1 answer
  • Over the past 150 years, what has happened to the amount of forest cover in Minnesota?
    6·1 answer
  • How does Earth's rotation affect our view of stars
    11·1 answer
  • Describe different atoms of the same element.
    12·2 answers
  • Name six simple machines. Give an example of each machine​
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!