a. =
Step-by-step explanation:
|60| = 60, and 60 is the same as 60
GIVEN
The following values are given:

SOLUTION
The z-score for the x values 9 and 14 can be calculated using the formula:

For x = 9:

For x = 14:

The probability can be calculated as follows:
![P(9\le x\le14)=Pr(-0.34The region that represents the solution is shown below:Therefore, the probability is given to be:[tex]P(9\le x\le14)=0.4671](https://tex.z-dn.net/?f=P%289%5Cle%20x%5Cle14%29%3DPr%28-0.34The%20region%20that%20represents%20the%20solution%20is%20shown%20below%3A%3Cp%3ETherefore%2C%20the%20probability%20is%20given%20to%20be%3A%3C%2Fp%3E%5Btex%5DP%289%5Cle%20x%5Cle14%29%3D0.4671)
The probability is 0.4671.
Answer:
The experiment is identifying whether a student gets less than a 75% on the entrance exam.
The trial is one exam being taken.
An outcome is a student scoring 80%.
Step-by-step explanation:
An experiment occurs when an intervention is made by a researcher and its effect are studied, thus the experiment here is identifying whether a student gets less than a 75% on the entrance exam.
The trial is the one exam being taken.
While an outcome is the aftermath of the experiment which includes a student scoring 80%.
Answer:
Can you get a picture please or more detail...
Answer:
Paasche's Index= 168.63= 169
Step-by-step explanation:
<em><u>Products</u></em>
<em><u>Base-Period Current Period</u></em>
Quantities Mean Shipping Quantities Mean Shipping
(Year 1) Cost per Unit ($) (Year 5) Cost per Unit ($)
A 1,500 10.50 4000 15.90
B 5,000 16.25 3000 33.00
C 6,500 12.20 8000 18.40
D 2,500 20.00 3000 35.50
Paasche's Index= ∑ pn.qn/∑po.qn* 100
Where pn is the price of the current year and qn is the quantity of the current year and po. is the price of the base year and qo. is the quantity of the base year.
Paasche's Index is the percentage ratio of the aggregate of given period prices weighted by the quantities sold or consumed in the given period to the aggregate of the base period prices weighted by the given period quantities.
Multiplying the current year prices with the current year quantities and the base year price with the current year quantities we get.
Product pn.qn po.qn
A 15.90* 4000 10.50* 4000
= 63600 =42000
B 33.00*3000 16.25 * 3000
= 99000 = 48750
C 18.40* 8000 12.20 *8000
=147200 =97600
D 35.50* 3000 20.00*3000
<u> =</u><u>106500 60,000 </u><u> </u>
<u>∑ 416300 248350 </u>
<u />
Paasche's Index= ∑ pn.qn/∑po.qn= <u> </u>416300/ 248350 *100 = 1.676=1.68= 168.63= 169
<u />