Answer:
Explanation:
It makes sense because Helium and Hydrogen only hold 1 and 2 subsequent protons/neutrons and electrons. When the Big Bang happened the entire universe was so hot that it was impossible for elements to form since it was impossible for electrons to stay bound to the atoms. After a few seconds the universe began to cool enough for electrons to bond to atoms and create different elements. Since Helium and Hydrogen have 1 and 2 electrons subsequently we can assume that they were the first elements to be created. Also they are the most abundant elements in the Universe which backs up this theory.
I am pretty sure it is 4.002602
The number of moles of argon that must be released in order to drop.
Solution:
Initial Temperature = 25°c = 298 K
Final Temperature =125 °c = 398 K
Initial Moles (n1) = 0.40 mole
Now, Using the ideal gas law,
n1T1 = n2T2
0.400×298 = n2 × 398
n2 = 0.299 mol
Moles of Argon released
= 0.400-0.299
= 0.100 mol.
Pressure and force are related. That is using the physical equations if you know the other, you can calculate one using pressure = force/area. This pressure can be reported in pounds per square inch, psi, or Newtons per square meter N/m2. Kinetic energy causes air molecules to move faster. They hit the walls of the container more often and with greater force. The increased pressure inside the can may exceed the strength of the can and cause an explosion.
Learn more about The temperature here:-brainly.com/question/24746268
#SPJ1
The balanced chemical reaction is:
2HCl + Ca = CaCl2 + H2
We are given the amount of the reactants to be used for the reaction. These values will be the starting point of our calculations.
100 g HCl ( 1 mol HCl / 36.46 g HCl ) = 2.74 mol HCl
100 g Ca ( 1 mol Ca / 40.08 g ) = 2.08 mol Ca
From the reaction, the mole ratio of the reactants is 2:1 where every 2 moles of hydrochloric acid, 1 mole of calcium is required. Therefore, the limiting reactant for this case is calcium.