Answer:
6 moles of electrons
Explanation:
Let us consider the species NO3− and ClO−. The NO3− is oxidized to NO the oxidation number of nitrogen is decreased from +5 to +2.
The oxidation number of chlorine is increased from +1 to +3. This implies that six electrons were transferred in the balanced reaction equation shown in the question. Hence the answer.
Answer:
B
Explanation:
It is important to only test one variable at a time because you need to be able to disprove or prove a problem with just one independent variable. When you have several variables in the experiment, it would be impossible to know which variable honestly caused the end result.
Answer:
Take 100 ml of a 18 molar solution. The total number of moles is (1 liter/1000 ml) 100 ml 18 moles is 1.8 moles.
1.5 moles in 1 liter so If 1.1 liters of water is added, the total volume is 1.2 liters and 1.8 moles are dissolves in it. 1.8 moles/ 1.2 liters is 1.5 moles per liter.
<h3>
Answer: b) 0.250 mol</h3>
============================================
Work Shown:
Using the periodic table, we see that
- 1 mole of carbon = 12 grams
- 1 mole of oxygen = 16 grams
These are approximations and these values are often found underneath the atomic symbol. For example, the atomic weight listed under carbon is roughly 12.011 grams. I'm rounding to 2 sig figs in those numbers listed above.
So 1 mole of CO2 is approximately 12+2*16 = 44 grams. The 2 is there since we have 2 oxygens attached to the carbon atom.
-------------------
Since 1 mole of CO2 is 44 grams, we can use that to convert from grams to moles.
11.0 grams of CO2 = (11.0 grams)*(1 mol/44 g) = (11.0/44) mol = 0.250 mol of CO2
In short,
11.0 grams of CO2 = 0.250 mol of CO2
This is approximate.
We don't need to use any of the information in the table.
A solution with a pH of 6.52 has a hydronium ion concentration of 3.02x10-7 mol/L and a hydroxide ion concentration of 3.31x10-8 mol/L.
The hydronium ion concentration of a solution can be calculated from pH by using
. For a pH of 6.52, hydronium ion concentration is 3.02x10-7 mol/L.
The concentration of hydroxide ions can be determined by identifying the value of pOH. The sum of pOH and pH is equal to 14, which is based on the negative logarithm of the ion-product constant of water. At a pH of 6.52, pOH is equal to 7.48.
The relationship between pOH and hydroxide ion concentration is the same as the relationship between pH and hydronium ion concentration. With this, the hydroxide ion concentration at pOH of 7.48 is
or 3.31x10-8 mol/L.
For more information regarding pH and pOH, please refer to the link brainly.com/question/13557815.
#SPJ4