Answer:

Explanation:
Hello,
In this case, we can compute the required volume by using the ideal gas equation as shown below:

Thus, solving for the volume and considering absolute temperature (in Kelvins), we obtain:

Best regards.
an element's name, chemical symbol, atomic number, atomic mass.
IDK what you are even asking for
Answer:
the value of equilibrium constant for the reaction is 8.5 * 10⁷
Explanation:
Ti(s) + 2 Cl₂(g) ⇄ TiCl₄(l)
equilibrium constant Kc = ![\frac{1}{[Cl_2]^2}](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B%5BCl_2%5D%5E2%7D)
Given that,
We are given:
Equilibrium amount of titanium = 2.93 g
Equilibrium amount of titanium tetrachloride = 2.02 g
Equilibrium amount of chlorine gas = 1.67 g
We calculate the No of mole = mass / molar mass
mass of chlorine gas = 1.67 g
Molar mass of chlorine gas = 71 g/mol
mole of chlorine = 1.67 / 71
= 7.0L
Concentration of chlorine is = no of mole / volume
= 0.024 / 7
= 3.43 * 10⁻³M
equilibrium constant Kc = ![\frac{1}{[Cl_2]^2}](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B%5BCl_2%5D%5E2%7D)
= ![\frac{1}{[3.43 * 10^-^3]^2}](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B%5B3.43%20%2A%2010%5E-%5E3%5D%5E2%7D)
= 8.5 * 10⁷
Answer:
D, E and F
Explanation:
About tetrachloro cobalt complexes, the following facts have been observed
- Color of the tetrachloro cobalt complexes is blue.
- They do not decompose on heating that means synthesis of tetra chloro is endothermic.
About hexa aqua cobalt complexes, the following facts have been observed
- Color of the hexa aqua cobalt complexes is pink color.
- They decompose on heating and remain stable on cooling that means process of synthesis of hexa aqua cobalt complexes is exothermic.
Based on above, the correct statements are:
The correct is chloro cobalt complex is blue and aqua cobalt
complex is pink.
The chloro complex is favored by heating.
If the chloro complex is a product, then the reaction must be endothermic.
The correct options are D, E and F.
Answer:
Pink
Explanation:
Because at first its orange then neutral its pink