Solution :
Energy of photon, E = 6.7 eV
E =
joule
Kinetic energy, 


Kinetic energy at high speeds


r - 1 = 7130
r = 7130 + 1
r = 7131


![$v^2=C^2\left[1-\left(\frac{1}{7131}\right)^2\right]$](https://tex.z-dn.net/?f=%24v%5E2%3DC%5E2%5Cleft%5B1-%5Cleft%28%5Cfrac%7B1%7D%7B7131%7D%5Cright%29%5E2%5Cright%5D%24)

Δ = 1 - 0.99999999017
= 0.00000000933
Relative mass, 

kg
-- Looking at the dots casually, they look green because they absorb all other
colors of light, and only green light is left to proceed to your eyes. (In order for
this to work, there has to be some green in the light shining on the dots.
Daylight and most light bulbs work fine.)
-- The filter looks red because it absorbs all other colors of light, and only
the red light is left to pass through the filter and come out on the other side.
-- When the green light from the dots hits the red filter, it's absorbed in the
filter, and there's no light left to come out on the other side.
If you're looking through the filter at the dots, they look <em>black</em>.
Answer:
4.763 × 10⁶ N/C
Explanation:
Let E₁ be the electric field due to the 4.0 μC charge and E₂ be the electric field due to the -6.0 μC charge. At the third corner, E₁ points in the negative x direction and E₂ acts at an angle of 60 to the negative x - direction.
Resolving E₂ into horizontal and vertical components, we have
E₂cos60 as horizontal component and E₂sin60 as vertical component. E₁ has only horizontal component.
Summing the horizontal components we have
E₃ = -E₁ + (-E₂cos60) = -kq₁/r²- kq₂cos60/r²
= -k/r²(q₁ + q₂cos60)
= -k/r²(4 μC + (-6.0 μC)(1/2))
= -k/r²(4 μC - 3.0 μC)
= -k/r²(1 μC)
= -9 × 10⁹ Nm²/C²(1.0 × 10⁻⁶)/(0.10 m)²
= -9 × 10⁵ N/C
Summing the vertical components, we have
E₄ = 0 + (-E₂sin60)
= -E₂sin60
= -kq₂sin60/r²
= -k(-6.0 μC)(0.8660)/(0.10 m)²
= -9 × 10⁹ Nm²/C²(-6.0 × 10⁻⁶)(0.8660)/(0.10 m)²
= 46.77 × 10⁵ N/C
The magnitude of the resultant electric field, E is thus
E = √(E₃² + E₄²) = √[(-9 × 10⁵ N/C)² + (46.77 10⁵ N/C)²) = (√226843.29) × 10⁴
= 476.28 × 10⁴ N/C
= 4.7628 × 10⁶ N/C
≅ 4.763 × 10⁶ N/C
Answer:
15.67 m/s
Explanation:
The ball has a projectile motion, with a horizontal uniform motion with constant speed and a vertical accelerated motion with constant acceleration g=9.8 m/s^2 downward.
Let's consider the vertical motion only first: the vertical distance covered by the ball, which is S=50 m, is given by

where t is the time of the fall. Substituting S=50 m and re-arranging the equation, we can find t:

Now we now that the ball must cover a distance of 50 meters horizontally during this time, in order to fall inside the carriage; therefore, the velocity of the carriage should be:

Which statement is always false for athletes participating in team sports?
Answer: Out of all the options shown above the one that best represents the statement that is alway false for athletes participating in team sports is answer choice C) Conflict resolution is a sign of poor sportsmanship. All the other choices are true when it comes to team sports.
I hope it helps, Regards.