Answer:
Acceleration is the rate of change of velocity with time.Acceleration occurs anytime an object's speed increases or decreases, or it changes direction. Much like velocity, there are two kinds of acceleration: average and instantaneous. Average acceleration is determined over a "long" time interval.
Explanation:
good luck
Explanation:
For the equilibrium:
\rho_{wood}gh-\rho_{oil}g(h-x)-\rho_{water}gx=0ρ
wood
gh−ρ
oil
g(h−x)−ρ
water
gx=0
\rho_{wood}h-\rho_{oil}(h-x)-\rho_{water}x=0ρ
wood
h−ρ
oil
(h−x)−ρ
water
x=0
(974)(3.97)-928(3.97-x)-1000x=0(974)(3.97)−928(3.97−x)−1000x=0
x=2.54\ cmx=2.54 cm
To solve this problem we will use the concepts related to gravitational acceleration and centripetal acceleration. The equality between these two forces that maintains the balance will allow to determine how the rigid body is consistent with a spherically symmetric mass distribution of constant density. Let's start with the gravitational acceleration of the Star, which is

Here



Mass inside the orbit in terms of Volume and Density is

Where,
V = Volume
Density
Now considering the volume of the star as a Sphere we have

Replacing at the previous equation we have,

Now replacing the mass at the gravitational acceleration formula we have that


For a rotating star, the centripetal acceleration is caused by this gravitational acceleration. So centripetal acceleration of the star is

At the same time the general expression for the centripetal acceleration is

Where
is the orbital velocity
Using this expression in the left hand side of the equation we have that



Considering the constant values we have that


As the orbital velocity is proportional to the orbital radius, it shows the rigid body rotation of stars near the galactic center.
So the rigid-body rotation near the galactic center is consistent with a spherically symmetric mass distribution of constant density
It’s going to be both answer A and B but if you can only answer one then it’s going to be B
Answer:
The deviation of a mirror is equal to twice the angle of incidence.The total angle between the straight-line path and the reflected ray is twice the angle of incidence. This is called the deviation of the light and measures the angle at which the light has strayed from its initial straight-line path.
HOPE IT HELPS :)
PLEASE MARK IT THE BRAINLIEST!