1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
patriot [66]
3 years ago
11

In xray machines, electrons are subjected to electric fields as great as 6.0 x 10^5 N/C. Find

Physics
1 answer:
katrin2010 [14]3 years ago
5 0

Answer:

a = 1.055 x 10¹⁷ m/s²

Explanation:

First, we will find the force on electron:

E = \frac{F}{q}\\\\F = Eq\\

where,

F = Force = ?

E = Electric Field = 6 x 10⁵ N/C

q = charge on electron = 1.6 x 10⁻¹⁹ C

Therefore,

F = (6\ x\ 10^5\ N/C)(1.6\ x\ 10^{-19}\ C)\\

F = 9.6 x 10⁻¹⁴ N

Now, we will calculate the acceleration using Newton's Second Law:

F = ma\\a = \frac{F}{m}\\

where,

a = acceleration = ?

m = mass of electron = 9.1 x 10⁻³¹ kg

therefore,

a = \frac{9.6\ x\ 10^{-14}\ N}{9.1\ x\ 10^{-31}\ kg}\\\\

<u>a = 1.055 x 10¹⁷ m/s²</u>

You might be interested in
Let A^=6i^+4j^_2k^ and B= 2i^_2j^+3k^. find the sum and difference of A and B​
andreyandreev [35.5K]

Explanation:

Let \textbf{A} = 6\hat{\textbf{i}} + 4\hat{\textbf{j}} - 2\hat{\textbf{k}} and \textbf{B} = 2\hat{\textbf{i}} - 2\hat{\textbf{j}} + 3\hat{\textbf{k}}

The sum of the two vectors is

\textbf{A + B} = (6 + 2)\hat{\textbf{i}} + (4 - 2)\hat{\textbf{j}} + (-2 + 3)\hat{\textbf{k}}

= 8\hat{\textbf{i}} + 2\hat{\textbf{j}} + \hat{\textbf{k}}

The difference between the two vectors can be written as

\textbf{A - B} = (6 - 2)\hat{\textbf{i}} + (4 - (-2))\hat{\textbf{j}} + (-2 - 3)\hat{\textbf{k}}

= 4\hat{\textbf{i}} + 6\hat{\textbf{j}} - 5\hat{\textbf{k}}

8 0
3 years ago
Can someone please helpppp meeeeeee
kaheart [24]

1.) Pitch

2.)Wavelength

3.)Density/Elastic Properties-b. Two of the above

4.)Liquids

5.) I'm not sure but I'm pretty sure it's the Doppler effect

6.) Frequency Increases

7 0
3 years ago
Read 2 more answers
Homework help plz it would help a lot ​
blagie [28]

#82

here we know that

acceleration = 2 m/s/s

time = 5 s

initial speed = 4 m/s

now we can use kinematics to find the final speed

v_f = v_i + at

v_f = 4 + 2(5)

v_f = 14 m/s

So correct answer will be option D)

#83

here we know that

acceleration = 3 m/s/s

time = 4 s

initial speed = 5 m/s

now we can use kinematics to find the final speed

v_f = v_i + at

v_f = 5 + 3(4)

v_f = 17 m/s

So correct answer will be option C)

#84

here we know that

acceleration = 7 m/s/s

time = 3 s

initial speed = 8 m/s

now we can use kinematics to find the final speed

v_f = v_i + at

v_f = 8 + 7(3)

v_f = 29 m/s

So correct answer will be option C)

6 0
3 years ago
If an object falling freely were somehow equipped with an odometer to measure the distance it travels, then the amount of distan
ioda

Answer:c

Explanation:

Given

object is falling Freely with an odometer

Suppose it falls with zero initial velocity

so distance fallen in time t is given by

h=ut+\frac{1}{2}gt^2

here u=0 and t=time taken

h=\frac{1}{2}gt^2

for t=1 s

h_1=\frac{1}{2}g

for t=2 s

h_2=\frac{1}{2}g(2)^2=\frac{4}{2}g=2g

distance traveled in 2 nd sec=2g-\frac{1}{2}g=\frac{3}{2}g

for t=3 s

h_3=\frac{1}{2}g(3)^2=\frac{9}{2}g

distance traveled in 3 rd sec=\frac{9}{2}g-2g=\frac{5}{2}g

so we can see that distance traveled in each successive second is increasing

5 0
3 years ago
Consider a uniformly charged sphere of radius Rand total charge Q. The electric field Eout outsidethe sphere (r≥R) is simply tha
AlexFokin [52]

1) Electric potential inside the sphere: \frac{Q}{8\pi \epsilon_0 R}(3-\frac{r^2}{R^2})

2) Ratio Vcenter/Vsurface: 3/2

3) Find graph in attachment

Explanation:

1)

The electric field inside the sphere is given by

E=\frac{1}{4\pi \epsilon_0}\frac{Qr}{R^3}

where

\epsilon_0=8.85\cdot 10^{-12}F/m is the vacuum permittivity

Q is the charge on the sphere

R is the radius of the sphere

r is the distance from the centre at which we compute the field

For a radial field,

E(r)=-\frac{dV(r)}{dr}

Therefore, we can find the potential at distance r by integrating the expression for the electric field. Calculating the difference between the potential at r and the potential at R,

V(R)-V(r)=-\int\limits^R_r  E(r)dr=-\frac{Q}{4\pi \epsilon_0 R^3}\int r dr = \frac{-Q}{8\pi \epsilon_0 R^3}(R^2-r^2)

The potential at the surface, V(R), is that of a point charge, so

V(R)=\frac{Q}{4\pi \epsilon_0 R}

Therefore we can find the potential inside the sphere, V(r):

V(r)=V(R)+\Delta V=\frac{Q}{4\pi \epsilon_0 R}+\frac{-Q}{8\pi \epsilon_0 R^3}(R^2-r^2)=\frac{Q}{8\pi \epsilon_0 R}(3-\frac{r^2}{R^2})

2)

At the center,

r = 0

Therefore the potential at the center of the sphere is:

V(r)=\frac{Q}{8\pi \epsilon_0 R}(3-\frac{r^2}{R^2})\\V(0)=\frac{3Q}{8\pi \epsilon_0 R}

On the other hand, the potential at the surface is

V(R)=\frac{Q}{4\pi \epsilon_0 R}

Therefore, the ratio V(center)/V(surface) is:

\frac{V(0)}{V(R)}=\frac{\frac{3Q}{8\pi \epsilon_0 R}}{\frac{Q}{4\pi \epsilon_0 R}}=\frac{3}{2}

3)

The graph of V versus r can be found in attachment.

We observe the following:

- At r = 0, the value of the potential is \frac{3}{2}V(R), as found in part b) (where V(R)=\frac{Q}{4\pi \epsilon_0 R})

- Between r and R, the potential decreases as -\frac{r^2}{R^2}

- Then at r = R, the potential is V(R)

- Between r = R and r = 3R, the potential decreases as \frac{1}{R}, therefore when the distance is tripled (r=3R), the potential as decreased to 1/3 (\frac{1}{3}V(R))

Learn more about electric fields and potential:

brainly.com/question/8960054

brainly.com/question/4273177

#LearnwithBrainly

7 0
3 years ago
Other questions:
  • A radioactive sample has a count rate of 800 counts per minute. One hour later, the count rate has fallen to 100 counts per minu
    11·1 answer
  • A 60-watt light bulb carries a current of 0.5 ampere. The total charge passing through it in one hour is:
    14·1 answer
  • A body has an initial velocity of 12 m s^-1 and is brought to rest over a distance of 45 m. What is the acceleration of the body
    11·1 answer
  • Item 16 The weight w (in pounds) of an object varies inversely with the square of the distance d (in miles) of the object from t
    12·1 answer
  • these questions confuse me. i think I know the answer but I'm not sure. this is density/hydraulic devices. help?
    9·2 answers
  • What are the standard units of measurement for scientific experiments
    5·2 answers
  • Consider the interference/diffraction pattern from a double-slit arrangement of slit separation d = 6.60 um and slit width a. Th
    5·1 answer
  • an explanation of conduction(science explanation) pleases helppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp
    10·1 answer
  • If a body with a mass of 4 kg is moved by a force of 20 N, what is the rate of its acceleration?​
    9·1 answer
  • What is the force applied to a baseball that has a mass of 142kg and has a acceleration of 30m/s to the power of 2
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!