Sound waves travel faster
The wavelength of the wave is 1.16m and the velocity is 23.64m/s.
To find the answer, we have to know more about the Transverse waves.
<h3>
How to find different parameters of a wave?</h3>
- The displacement of the string as a function of position and time, y(x,t), when the wave traveling along a string lying along the x-axis is given as,

- Comparing this with the general form of wave equation, we get,

- We have to find the wavelength of the wave, for this, we have the expression as,

- We have to find the velocity of the wave,

Thus, we can conclude that, the wavelength of the wave is 1.16m and the velocity is 23.64m/s
Learn more about the transvers waves here:
brainly.com/question/25746208
#SPJ1
Answer:
First, let’s correct the question. Acceleration is the rate of change in velocity. Its unit therefore is ft/sec/sec. If S is the distance traveled for a given duration, S = Vot + (1/2)at^2 where Vo is the initial velocity, a is the acceleration and t is the time. For Vo = 0, a = 6m/sec/sec and t = 3 sec. The distance traveled is S = 0 + (1/2) x 6 x 3^2 = 27 meters
Answer:
2354.4 Pa
40221 Pa
Explanation:
= Density = 1000 kg/m³
g = Acceleration due to gravity = 9.81 m/s²
h = Depth
The pressure difference would be

The pressure difference in the first case is 2354.4 Pa

The pressure difference in the second case is 40221 Pa
Answer:
W2 = W1
Explanation:
work is independent of the path taken between the points.