Hey there!
Your answer: Spilling breaker
Spilling breaker usually occurs when a beach or ocean is flat, and as the waves of the wind continues to happen, slowly the region would eventually become a slope.
It's almost like play-dough. Let's say that we set a perfect flat surface of play-dough on the table. As we continue slide our hands one direction, doesn't the play dough have more on one side than the other? It eventually contains a slope if you add enough from the first place.
Your answer: Spilling breaker
Answer:
2.72 Kilometers
Explanation:
8 × 340 m/s = 2720 m = 2.72 Kilometers
Answer:
The maximum pressure that will be attained in the tank before the plug melts and releases gas should be less than 74.26 atm.
Explanation:
To calculate the final pressure of the system, we use the equation given by Gay-Lussac Law. This law states that pressure of the gas is directly proportional to the temperature of the gas at constant pressure.
Mathematically,

where,
are the initial pressure and temperature of the gas.
are the final pressure and temperature of the gas.
We are given:

Putting values in above equation, we get:

The maximum pressure that will be attained in the tank before the plug melts and releases gas should be less than 74.26 atm.
Answer:
400m
Explanation:
Brainliest? :))
Let your initial displacement from your home to the store be
Dd
>
1 and your displacement from the store to your friend’s house
be Dd
>
2.
Given: Dd
>
1 = 200 m [N]; Dd
>
2 = 600 m [S]
Required: Dd
>
T
Analysis: Dd
>
T 5 Dd
>
1 1 Dd
>
2
Solution: Figure 6 shows the given vectors, with the tip of Dd
>
1
joined to the tail of Dd
>
2. The resultant vector Dd
>
T is drawn in red,
from the tail of Dd
>
1 to the tip of Dd
>
2. The direction of Dd
>
T is [S].
Dd
>
T measures 4 cm in length in Figure 6, so using the scale of
1 cm : 100 m, the actual magnitude of Dd
>
T is 400 m.
Statement: Relative to your starting point at your home, your
total displacement is 400 m [S].