To solve this problem we will derive the expression of the precession period from the moment of inertia of the given object. We will convert the units that are not in SI, and finally we will find the precession period with the variables found. Let's start defining the moment of inertia.

Here,
M = Mass
R = Radius of the hoop
The precession frequency is given as

Here,
M = Mass
g= Acceleration due to gravity
d = Distance of center of mass from pivot
I = Moment of inertia
= Angular velocity
Replacing the value for moment of inertia


The value for our angular velocity is not in SI, then


Replacing our values we have that


The precession frequency is




Therefore the precession period is 5.4s
Answer:
towards west
Explanation:
As we know that the speed of the blue car as appear to the bicycle rider is given as
towards west
also it is given that bicycle is moving at speed of 10 km/h towards East
so here we have

so we have

towards west
now speed of the red car is given as 15 km/h towards west
so here the relative speed of blue car with respect to red car is given as

towards west
A
Excitation to a higher energy state requires energy which is absorbed from the electromagnetic waves applied.
Answer:
The magnitude of the hiker’s displacement is 2.96 km
Explanation:
Let the initial displacement of the hiker, = x = 2km
the final displacement of the hiker, = y = 1.4 km
The resultant of the two vectors, According to Pythagorean theorem is the vector sum of the two vectors.
R' = x' + y'
Check the image uploaded for solution;