1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
s344n2d4d5 [400]
3 years ago
12

An automobile accelerates 1.77 m/s2 over 6.00 s to reach freeway speed at the end of an

Physics
1 answer:
GaryK [48]3 years ago
6 0

Answer:

Startinfg speed is 13.82 m/s

Explanation:

Use equation for realtion between start and final speed :

Vf=Vs+a*t

Vf-final speed

Vs-start speed

Vf=24.44m/s

a=1.77m/s²(acceleration)

t=6.00s(Time)

Vf=Vs+a*t

Vs=a*t-Vf

Vs=1.77m/s²*6s-24.44m/s

Vs=-13.82m/s

You might be interested in
Jill does twice as much work as Jack does and in half the time. Jill's power output is Group of answer choices one-fourth as muc
Musya8 [376]

Answer:

Second Choice.

Explanation:

Jack's Power = W/t

Jill's Power = 2W/(0.5)*t

2/0.5 = 4

Jill's Power = 4*W/t

Jill's Power is 4 times greater than Jack's

Second Choice

3 0
3 years ago
Which explanation of the solar system best fits the observations of the planets and how they orbit the sun?
NeTakaya
You're right, Answer C

The dust and gas accumulate to form a solar nebula, which later on creates the star and the planets.
4 0
3 years ago
Read 2 more answers
1. A large ball was let go on a hill and started rolling down with a constant acceleration of 4.2 m/s². What was the velocity of
pochemuha

Answer:

<em>The velocity after 12s is 50.4m/s</em>.

Explanation:

<em>In acceleration formula make velocity the </em><em>subject.</em>

<em> acceleration(a) = velocity(</em>v)÷time(t)

<h3><em> </em><em>velocity</em><em> </em><em>(</em><em>v)</em><em> </em><em>=</em><em> </em><em>acceleration</em><em>(</em><em>a)</em><em>×</em><em>t</em><em>ime</em><em>(</em><em>t)</em></h3>

<em>V </em><em>=</em><em> </em><em>4</em><em>.</em><em>2</em><em>m</em><em>/</em><em>s²</em><em>×</em><em>1</em><em>2</em><em>s</em>

<em>V </em><em>=</em><em> </em><em>5</em><em>0</em><em>.</em><em>4</em><em>m</em><em>/</em><em>s</em>

<em>Therefore</em><em> the</em><em> </em><em>velocity</em><em> </em><em>after</em><em> </em><em>1</em><em>2</em><em>s</em><em> </em><em>is </em><em>5</em><em>0</em><em>.</em><em>4</em><em>m</em><em>/</em><em>s.</em>

8 0
2 years ago
Help with this physics task pls
cupoosta [38]

Answer:

Answers can be seen below

Explanation:

First we must explain the essential when we clear equations, and that is that if the term we need to clear is accompanied by other terms that are being added up, then those terms go to the other side of the equation to subtract if those terms are subtracting, then they go to the other side to add, if those terms are found multiplying then they go to the other side of the equation to divide and if those other terms are found dividing then they go to the other side of the equation to multiply.

(Primero debemos explicar lo esencial cuando despejamos ecuaciones, y es que si el término que necesitamos despejar va acompañado de otros términos que se están sumando, entonces esos términos van al otro lado de la ecuación para restar si esos términos están restando, luego van al otro lado para sumar, si esos términos se encuentran multiplicando luego van al otro lado de la ecuación a dividir, y si esos términos se encuentran dividiendo, pasan al otro lado de la ecuación a multiplicar.)

1 )  

t=\frac{v}{a} ; d=s*(t-t_{0} )

2)

k=\frac{2*U}{x^{2} }; T_{2}=\frac{P_{2}*V_{2}*T_{1}  }{P_{1}*V_{1}  }  \\

3)

L=\frac{F}{\pi*r*P}; d=\frac{w}{F*cos(o)}

4)

t^{2}=\frac{2*x}{g}  ; V_{2}=\frac{A_{1}*V_{1} }{A_{2} }  \\

5)

h=\frac{V}{\pi *r^{2} } ; r=\frac{t}{F*sin(o)}

6)

h=\frac{m}{(1/2)*\pi *r^{2} }  ; h_{2}=\frac{F_{2}*(1/2)*b_{1} *h_{1} }{F_{1}*(1/2)*b_{2}*h_{2}   }

7)

b=\frac{mg-ma}{v}; m=\frac{F+kx}{g*cos(o)}

8)

a=\frac{v-v_{o} }{t} ; u=\frac{m_{1}+m_{2}  }{M}

9)

v_{o}=\frac{x-\frac{1}{2}*a*t^{2}  }{t}  ; F=\frac{W+uNd}{d*cos(o)}

10)

h=\frac{E-\frac{1}{2}*m*v^{2}  }{mg} ; v_{2} ^{2} = \frac{Dk-\frac{1}{2} m*v_{1}^{2}  }{\frac{1}{2}m }

11)

N=\frac{mg*sin(o)-F}{u} ; x^{2}=\frac{W+\frac{1}{2}k*x_{1}^{2}   }{\frac{1}{2}*k }

12)

x=x_{o} +\frac{v^{2-v_{o}^{2}  } }{2a}  ;  m=\frac{P*A-F_{1}-F_{2} }{g}

13)

x_{o} = x-\frac{F}{k} ;  u=\frac{cos(o)-\frac{a}{g} }{sin(o)}

14)

t=\frac{d}{v} +t_{o} ; t_{o} = t-(\frac{v-v_{o} }{a} )

15)

F_{2}=\frac{W-F_{1} *d}{d}+F_{3}   ;  v_{2}^{2}=v_{1}^{2}+\frac{2*Dk}{m}

16)

y_{1}=y-\frac{u}{mg}  ; x^{2} = \frac{2W}{k}+x_{o} ^{2}

7 0
4 years ago
Can anyone solve these for my by using unit vectors? Can you also please show your work
Oxana [17]

4. The Coyote has an initial position vector of \vec r_0=(15.5\,\mathrm m)\,\vec\jmath.

4a. The Coyote has an initial velocity vector of \vec v_0=\left(3.5\,\frac{\mathrm m}{\mathrm s}\right)\,\vec\imath. His position at time t is given by the vector

\vec r=\vec r_0+\vec v_0t+\dfrac12\vec at^2

where \vec a is the Coyote's acceleration vector at time t. He experiences acceleration only in the downward direction because of gravity, and in particular \vec a=-g\,\vec\jmath where g=9.80\,\frac{\mathrm m}{\mathrm s^2}. Splitting up the position vector into components, we have \vec r=r_x\,\vec\imath+r_y\,\vec\jmath with

r_x=\left(3.5\,\dfrac{\mathrm m}{\mathrm s}\right)t

r_y=15.5\,\mathrm m-\dfrac g2t^2

The Coyote hits the ground when r_y=0:

15.5\,\mathrm m-\dfrac g2t^2=0\implies t=1.8\,\mathrm s

4b. Here we evaluate r_x at the time found in (4a).

r_x=\left(3.5\,\dfrac{\mathrm m}{\mathrm s}\right)(1.8\,\mathrm s)=6.3\,\mathrm m

5. The shell has initial position vector \vec r_0=(1.52\,\mathrm m)\,\vec\jmath, and we're told that after some time the bullet (now separated from the shell) has a position of \vec r=(3500\,\mathrm m)\,\vec\imath.

5a. The vertical component of the shell's position vector is

r_y=1.52\,\mathrm m-\dfrac g2t^2

We find the shell hits the ground at

1.52\,\mathrm m-\dfrac g2t^2=0\implies t=0.56\,\mathrm s

5b. The horizontal component of the bullet's position vector is

r_x=v_0t

where v_0 is the muzzle velocity of the bullet. It traveled 3500 m in the time it took the shell to fall to the ground, so we can solve for v_0:

3500\,\mathrm m=v_0(0.56\,\mathrm s)\implies v_0=6300\,\dfrac{\mathrm m}{\mathrm s}

5 0
4 years ago
Other questions:
  • At the end of a bike ride up a mountain, Chris was at an elevation of 500 meters above where he started. If Chris's mass is 60kg
    8·1 answer
  • Potential energy is _____ energy. A. heat B. stored C. released
    6·2 answers
  • Which of the following is an example of an aerobic activity?
    11·2 answers
  • A 53 kg gymnast applies a vertical ground reaction force of 1,080 N at 0.13 m behind the center of mass during a forward somersa
    5·1 answer
  • Demonstrate the path light takes when traveling through the convex lens. Include an explanation of the drawing.
    11·1 answer
  • Glass absorbs ultraviolet (UV) rays from the Sun. Would a fraction of the incident UV light be reflected from the air/glass boun
    5·1 answer
  • Are photons causing the electrons to flow off of the target? ( the target is calcium)
    15·1 answer
  • Which law states that the orbit of each planet is elliptical and that the Sun is at one focus of each ellipse? A. Kepler's first
    9·1 answer
  • What is the origin of a warm, wet air masses.
    6·2 answers
  • Calculate the current,if charges is 100c pass through ​
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!