Answer:
Second Choice.
Explanation:
Jack's Power = W/t
Jill's Power = 2W/(0.5)*t
2/0.5 = 4
Jill's Power = 4*W/t
Jill's Power is 4 times greater than Jack's
Second Choice
You're right, Answer C
The dust and gas accumulate to form a solar nebula, which later on creates the star and the planets.
Answer:
<em>The velocity after 12s is 50.4m/s</em>.
Explanation:
<em>In acceleration formula make velocity the </em><em>subject.</em>
<em> acceleration(a) = velocity(</em>v)÷time(t)
<h3><em> </em><em>velocity</em><em> </em><em>(</em><em>v)</em><em> </em><em>=</em><em> </em><em>acceleration</em><em>(</em><em>a)</em><em>×</em><em>t</em><em>ime</em><em>(</em><em>t)</em></h3>
<em>V </em><em>=</em><em> </em><em>4</em><em>.</em><em>2</em><em>m</em><em>/</em><em>s²</em><em>×</em><em>1</em><em>2</em><em>s</em>
<em>V </em><em>=</em><em> </em><em>5</em><em>0</em><em>.</em><em>4</em><em>m</em><em>/</em><em>s</em>
<em>Therefore</em><em> the</em><em> </em><em>velocity</em><em> </em><em>after</em><em> </em><em>1</em><em>2</em><em>s</em><em> </em><em>is </em><em>5</em><em>0</em><em>.</em><em>4</em><em>m</em><em>/</em><em>s.</em>
Answer:
Answers can be seen below
Explanation:
First we must explain the essential when we clear equations, and that is that if the term we need to clear is accompanied by other terms that are being added up, then those terms go to the other side of the equation to subtract if those terms are subtracting, then they go to the other side to add, if those terms are found multiplying then they go to the other side of the equation to divide and if those other terms are found dividing then they go to the other side of the equation to multiply.
(Primero debemos explicar lo esencial cuando despejamos ecuaciones, y es que si el término que necesitamos despejar va acompañado de otros términos que se están sumando, entonces esos términos van al otro lado de la ecuación para restar si esos términos están restando, luego van al otro lado para sumar, si esos términos se encuentran multiplicando luego van al otro lado de la ecuación a dividir, y si esos términos se encuentran dividiendo, pasan al otro lado de la ecuación a multiplicar.)
1 )
; 
2)
; 
3)
; 
4)

5)

6)

7)

8)

9)

10)

11)

12)

13)

14)
; 
15)

16)

4. The Coyote has an initial position vector of
.
4a. The Coyote has an initial velocity vector of
. His position at time
is given by the vector

where
is the Coyote's acceleration vector at time
. He experiences acceleration only in the downward direction because of gravity, and in particular
where
. Splitting up the position vector into components, we have
with


The Coyote hits the ground when
:

4b. Here we evaluate
at the time found in (4a).

5. The shell has initial position vector
, and we're told that after some time the bullet (now separated from the shell) has a position of
.
5a. The vertical component of the shell's position vector is

We find the shell hits the ground at

5b. The horizontal component of the bullet's position vector is

where
is the muzzle velocity of the bullet. It traveled 3500 m in the time it took the shell to fall to the ground, so we can solve for
:
