Answer:
Number of turns on the secondary coil of the adapter transformer is 10.
Explanation:
For a transformer,

where
is the voltage induced in the secondary coil
is the voltage in the primary coil
is the number of turns of secondary coil
is the number of turns of primary coil
From the given question,
= 
⇒
= 
= 9.999733
∴
= 10 turns
Answer:
T= 5.18N
Explanation:
u = mass of chord / length of chord
u = 0.49/ 7.3
u = 0.067 kg/m
Velocity of sound waves (v) =length of chord / time taken for wave to travel
v = 7.3 / 0.83 = 8.795m/s
Tension is calculated below using the formula
T = v² * u
T = (8.795)² x 0.067
T= 5.18N
Answer:
The speed of water must be expelled at 6.06 m/s
Explanation:
Neglecting any drag effects of the surrounding water we can assume the linear momentum in this case is conserves, that is, the total initial momentum of the octopus and the water kept in it cavity should be equal to the total final linear momentum. That's known as conservation of momentum, mathematically expressed as:

with Pi the total initial momentum and Pf the final total momentum. The total momentum is the sum of the momentums of the individual objects, in our case the octopus and the mass of water that will be expelled:

with Po the momentum of the octopus and Pw the momentum of expelled water. Linear momentum is defined as mass times velocity:

Note that initially the octopus has the water in its cavity and both are at rest before it sees the predator so
:

We should find the final velocity of water if the final velocity of the octopus is 2.70 m/s, solving for
:


The minus sign indicates the velocity of the water is opposite the velocity of the octopus.
Answer:
I am pretty sure its the second one but I could be wrong sorry if I am.
Explanation:
:D
Answer:
its not moving at a constant velocity because it is slowing down
Explanation: