Answer:
a)
b)
Explanation:
Given:
mass of bullet, 
compression of the spring, 
force required for the given compression, 
(a)
We know

where:
a= acceleration


we have:
initial velocity,
Using the eq. of motion:

where:
v= final velocity after the separation of spring with the bullet.


(b)
Now, in vertical direction we take the above velocity as the initial velocity "u"
so,

∵At maximum height the final velocity will be zero

Using the equation of motion:

where:
h= height
g= acceleration due to gravity


is the height from the release position of the spring.
So, the height from the latched position be:



Nothing can travel faster than the speed of light. As such, perceptions of objects and time change as they approach light speed, but the laws of physics remain consistent regardless of speed. Objects will appear shortened and time will appear to slow down around an observer approaching near light speeds, but all quantities still exist as they did before and all causality is preserved, even if observers in different points or traveling at different speeds will report different things.
Answer:
The tension in the strap is 74.82 N.
Explanation:
Given that,
Angle between the horizontal and the suitcase is 36 degrees.
The distance traveled by the suitcase is 15 meters.
Let the work done by the suitcase is 908 J. We know that the work done in the vector form is given by :

So, the tension in the strap is 74.82 N. Hence, this is the required solution.
Yes D is definitely the answer
<em>V</em><em>=</em><em>I×</em><em>R</em>
<em>V</em><em>=</em><em>0</em><em>.</em><em>0</em><em>2</em><em>5</em><em>×</em><em>3</em><em>6</em>
<em>V</em><em>=</em><em>0</em><em>.</em><em>9</em><em> </em><em>sa</em><em>me</em><em> </em><em>as</em><em> </em><em>0</em><em>.</em><em>9</em><em>0</em>