The sun’s gravitational attraction and the planet’s inertia keeps planets moving is circular orbits.
Explanation:
The planets in the Solar System move around the Sun in a circular orbit. This motion can be explained as a combination of two effects:
1) The gravitational attraction of the Sun. The Sun exerts a force of gravitational attraction on every planet. This force is directed towards the Sun, and its magnitude is

where
G is the gravitational constant
M is the mass of the Sun
m is the mass of the planet
r is the distance between the Sun and the planet
This force acts as centripetal force, continuously "pulling" the planet towards the centre of its circular orbit.
2) The inertia of the planet. In fact, according to Newton's first law, an object in motion at constant velocity will continue moving at its velocity, unless acted upon an external unbalanced force. Therefore, the planet tends to continue its motion in a straight line (tangential to the circular orbit), however it turns in a circle due to the presence of the gravitational attraction of the Sun.
Learn more about gravity:
brainly.com/question/1724648
brainly.com/question/12785992
#LearnwithBrainly
The solution you should use is Hooke's law: F=-kx
It should have the same signs because they repel due to the stretch of the spring.
a. Since there is a constant energy within the spring, then Hooke's law will determine the possible algebraic signs. The solution should be
<span>F = kx
270 N/m x 0.38 m = 102.6 N
</span>
b. Then use Coulomb's law; F=kq1q2/r^2 to find the charges produced in the force.
Answer:A
Explanation:
In R-L circuit current is given by
![i=i_0\left [ 1-e^{\frac{-t}{L/R}}\right ]](https://tex.z-dn.net/?f=i%3Di_0%5Cleft%20%5B%201-e%5E%7B%5Cfrac%7B-t%7D%7BL%2FR%7D%7D%5Cright%20%5D)
where i=current at any time t

R=resistance
L=Inductance
at t=0
approaches to 1
therefore ![i=i_0\left [ 1-1\right ]](https://tex.z-dn.net/?f=i%3Di_0%5Cleft%20%5B%201-1%5Cright%20%5D)
i=0
when t approaches to
,
approaches to zero
thus 
thus we can say that initially circuit act as broken wire with zero current
and it increases exponentially with time and act as ordinary connecting wire
That is right because base*length is how you get the height
Answer:
The amount of energy added to rise the temperature Q = 17413.76 KJ
Explanation:
Mass of water = 52 kg
Initial temperature
= 68 °F = 20° c
Final temperature
= 212 °F = 100° c
Specific heat of water 
Now heat transfer Q = m × C × (
-
)
⇒ Q = 52 × 4.186 × ( 100 - 20 )
⇒ Q = 17413.76 KJ
This is the amount of energy added to rise the temperature.