Answer:
Explanation:
Two straight wires
Have current in opposite direction
i1=i2=i=2Amps
Distance between two wires
r=5mm=0.005m
Length of one wire is ∞
Length of second wire is 0.3m
Force between the wire,
The force between two parallel currents I1 and I2, separated by a distance r, has a magnitude per unit length given by
F/l = μoi1i2/2πr
F/l=μoi²/2πr
μo=4π×10^-7 H/m
The force is attractive if the currents are in the same direction, repulsive if they are in opposite directions.
F/l = μoi1i2/2πr
F/0.3=4π×10^-7×2²/2π•0.005
F/0.3=1.6×10^-4
Cross multiply
F=1.6×10^-4×0.3
F=4.8×10^-5N
Answer:
<h2>0.5J</h2>
Explanation:
given data
Force applied F= 1N
extension e= 0.1m
let us find the spring constant first
applying
F=ke
k=F/e
k=1/0.1
k=10N/m
Step two:
Required is the work done
we know that the expression/formula for the work done by a spring is given as
Wd=1/2kx^2
x=0.4m
substitute
Wd= 1/2*10*0.4^2
Wd=0.5*10*0.16
Wd=0.5J
Answer:
Light or visible light is electromagnetic radiation within the portion of the electromagnetic spectrum that is perceived by the human eye. Visible light is usually defined as having wavelengths in the range of 400–700 nanometres, between the infrared and the ultraviolet.
Here are the 7 from shortest to longest wavelength.
Violet - shortest wavelength, around 400-420 nanometers with highest frequency.
Indigo - 420 - 440 nm.
Blue - 440 - 490 nm.
Green - 490 - 570 nm.
Yellow - 570 - 585 nm.
Orange - 585 - 620 nm.
Red - longest wavelength, at around 620 - 780 nanometers with lowest frequency.
Explanation:
Solar Energy is the answer to the question tell me if i`m wrong