Answer:
The angle of projection is 12.26⁰.
Explanation:
Given;
initial position of the dart, h₀ = 1.50 m
height above the ground reached by the dart, h₁ = 1.73 m
maximum height reached by the dart, Hm = h₁ - h₀ = 1.73 m - 1.50 m= 0.23 m
velocity of the dart, u = 10 m/s
The maximum height reached by the projectile is calculated as;

where;
θ is angle of projection
g is acceleration due to gravity = 9.8 m/s²

Therefore, the angle of projection is 12.26⁰.
Explanation:
Given that,
Current, I = 0.015 A
Voltage, V = 240 volts
We need to find the resistance. Using Ohm's law we can find it as follows :

So, When a current of 0.015 A passes through human body at 240 volts p.d it causes 16000 ohms of resistance.
The number of complete cycles the rotating mirror goes through before the angular velocity gets to zero is approximately 1166.8 revs
<h3>What is angular velocity?</h3>
Angular velocity is the ratio of the angle turned to the time taken.
The kinematic equation for angular velocity are presented as follows;
ω = ω₀ + α·t
θ = θ₀ + ω₀·t + 0.5·α·t²
Where;
θ₀ = The initial angle turned = 0
ω₀ = The initial angular velocity of the mirrors = 115 rad/s clockwise
α = The angular acceleration = (115 - (-115))rad/s/(85 s) = -46/17 m/s²
t = The duration of the motion;
When the angular velocity, ω is zero, we get;
0 = 115 - 46/17·t
t = 85/2
Which indicates;
θ = 0 + 115× (85/2) + 0.5×(46/17) ×(85/2)² = 7331.25
θ = 7331.25 radians
θ = 7331.25/(2×π) ≈ 1166.8 rev
The mirrors would have turned through approximately 1166.8 revolutions when the angular gets to zero
Learn more about angular velocity and acceleration here:
brainly.com/question/13014974
#SPJ1
Answer:
a.
b.
Explanation:
We are given that




a.We have to find the angle


b. We have to find the speed 
According to law of conservation of momentum



The question is incomplete. Here is the complete question.
Three crtaes with various contents are pulled by a force Fpull=3615N across a horizontal, frictionless roller-conveyor system.The group pf boxes accelerates at 1.516m/s2 to the right. Between each adjacent pair of boxes is a force meter that measures the magnitude of the tension in the connecting rope. Between the box of mass m1 and the box of mass m2, the force meter reads F12=1387N. Between the box of mass m2 and box of mass m3, the force meter reads F23=2304N. Assume that the ropes and force meters are massless.
(a) What is the total mass of the three boxes?
(b) What is the mass of each box?
Answer: (a) Total mass = 2384.5kg;
(b) m1 = 915kg;
m2 = 605kg;
m3 = 864.5kg;
Explanation: The image of the boxes is described in the picture below.
(a) The system is moving at a constant acceleration and with a force Fpull. Using Newton's 2nd Law:




Total mass of the system of boxes is 2384.5kg.
(b) For each mass, analyse each box and make them each a free-body diagram.
<u>For </u>
<u>:</u>
The only force acting On the
box is force of tension between 1 and 2 and as all the system is moving at a same acceleration.


= 915kg
<u>For </u>
<u>:</u>
There are two forces acting on
: tension caused by box 1 and tension caused by box 3. Positive referential is to the right (because it's the movement's direction), so force caused by 1 is opposing force caused by 3:


= 605kg
<u>For </u>
<u>:</u>


= 864.5kg