energy never disappears, for example, if you give some kinetic energy to a ball and it stops few seconds later, friction steals this energy to ground which ball was going on. "Law of Conservation of Energy" tell us that energy can't disappear
Answer:
The shortest distance in which you can stop the automobile by locking the brakes is 53.64 m
Explanation:
Given;
coefficient of kinetic friction, μ = 0.84
speed of the automobile, u = 29.0 m/s
To determine the the shortest distance in which you can stop an automobile by locking the brakes, we apply the following equation;
v² = u² + 2ax
where;
v is the final velocity
u is the initial velocity
a is the acceleration
x is the shortest distance
First we determine a;
From Newton's second law of motion
∑F = ma
F is the kinetic friction that opposes the motion of the car
-Fk = ma
but, -Fk = -μN
-μN = ma
-μmg = ma
-μg = a
- 0.8 x 9.8 = a
-7.84 m/s² = a
Now, substitute in the value of a in the equation above
v² = u² + 2ax
when the automobile stops, the final velocity, v = 0
0 = 29² + 2(-7.84)x
0 = 841 - 15.68x
15.68x = 841
x = 841 / 15.68
x = 53.64 m
Thus, the shortest distance in which you can stop the automobile by locking the brakes is 53.64 m
Answer: 1. the object is moving away from the origin
4. the object started at 2 meters
5. the object is traveling at a constant velocity
Explanation:
Answer:
so initial speed of the rock is 30.32 m/s
correct answer is b. 30.3 m/s
Explanation:
given data
h = 15.0m
v = 25m/s
weight of the rock m = 3.00N
solution
we use here work-energy theorem that is express as here
work = change in the kinetic energy ..............................1
so it can be written as
work = force × distance ...................2
and
KE is express as
K.E = 0.5 × m × v²
and it can be written as
F × d = 0.5 × m × (vf)² - (vi)² ......................3
here
m is mass and vi and vf is initial and final velocity
F = mg = m (-9.8) , d = 15 m and v{f} = 25 m/s
so put value in equation 3 we get
m (-9.8) × 15 = 0.5 × m × (25)² - (vi)²
solve it we get
(vi)² = 919
vi = 30.32 m/s
so initial speed of the rock is 30.32 m/s