The correct answer is
C. Light can pass through Object B faster than it can pass through Object A.
In fact, the index of refraction of a material is defined as:

where c is the speed of light in vacuum and v is the speed of light in the material. Rearranging the equation, we can write the speed of light in the material as:

So we that, the smaller the refractive index n, the greater the speed of light in the material, v. In this problem, object B has lower refractive index than object A, so light travels faster in object B.
It can be a) 12Hz.................
Answer:
Gravitational force increases as the masses of the objects increase and decreases as the distance between the objects increases. Balanced forces acting on an object cause no change in the motion of the object. When unbalanced forces act on an object, the sum of the forces is not equal to zero.
Explanation:
put it in your own words
Answer:
v_average = 15 m / s
Explanation:
The average speed can be found in two ways,
* taking the distance traveled and divide it by the time spent
* taking the velocities in each time interval and then finding the weighted average by the time fraction
v_average = 1 / t_total ∑
vi ti
Let's apply this last equation
Total time is
t = t₁ + t₂
t = 10 + 10 = 20 min
v_average = 10/20 10 + 10/20 20
v_average = 10/2 + 20/2
v_average = 15 m / s