Answer:
Say you are holding a thread to the end of which is tied a stone. Now when you start whirling it around you will notice that two forces have to be applied simultaneously. One which pulls the thread inwards and the other which throws it sideways or tangentially.
Both these forces will generate their respective accelerations.
The one pointed inwards will generate centripetal or radial acceleration.
The one pointing sideways will generate tangential acceleratio
Explanation:
A major difference between tangential acceleration and centripetal acceleration is their direction
Centripetal means “center seeking”. Centripetal acceleration is always directed inward.
Tangential acceleration is always directed tangent to the circle.
Tangential acceleration results from the change in magnitude of the tangential velocity of an
object. An object can move in a circle and not have any tangential acceleration. No tangential
acceleration simply means the angular acceleration of the object is zero and the object is moving
with a constant angular velocity
Answer:
The distance from charge 5 μ C = 26.45 cm and the distance from - 4 μ C is 23.55 cm.
Explanation:
Given that
q₁ = 5 μ C
q₂ = - 4 μ C
The distance between charges = 50 cm
d= 50 cm
Lets take at distance x from the charge μ C ,the electrical field is zero.
That is why the distance from the charge - 4 μ C = 50 - x cm
We know that ,electric field is given as


Therefore the distance from charge 5 μ C = 26.45 cm and the distance from - 4 μ C is 23.55 cm.
Answer:
F = 0 N
Explanation:
Force on a moving charge in constant magnetic field is given by the formula

so here it depends on the speed of charge, magnetic field and the angle between velocity of charge and the magnetic field
here when charge is moving with speed 100 m/s in a given magnetic field then the force on the charge is given as

now when charge is moving parallel to the magnetic field with different speed then in that case

so here we have
F = 0
Answer:
It may seem as though burning destroys matter, but the same amount, or mass, of matter still exists after a campfire as before. Look at Figure 3.7.1 below. It shows that when wood burns, it combines with oxygen and changes not only to ashes, but also to carbon dioxide and water vapor. The gases float off into the air, leaving behind just the ashes. Suppose you had measured the mass of the wood before it burned and the mass of the ashes after it burned. Also suppose you had been able to measure the oxygen used by the fire and the gases produced by the fire. What would you find? The total mass of matter after the fire would be the same as the total mass of matter before the fire.
Based on my information, this would actually be representing
"the average kinetic energy of water particles". So, as you take notice that where this temperature is being located, and also, how this would be

°C, this would make more sense for this to be representing as <span>the
average kinetic energy of water particles.</span>