System A undergoes an increase in entropy while system B undergoes a decrease in entropy.
Entropy is the degree of disorderliness of a system. The entropy of a system depends on the number of particles present in the system as well as the state of matter.
Entropy is increased when solid particles dissolve in water because more particles are produced thereby increasing the level of disorderliness in the system.
On the other hand, when vapor is condensed, the degree of disorderliness decreases as gases are converted to liquids.
Learn more: brainly.com/question/13146879
Answer:
the Glancing angle is the angle between the incident ray and plane mirror which is 90o in the given case. The angle between the direction of the incident ray and the reflected ray is the angle of deviation. Since the angle of deviation for a plane mirror is twice the glancing angle, the angle of deviation is 1800.
Answer:
23 kPa = Partial pressure O₂
Explanation:
In a mixture of gases, the sum of partial pressure of each gas that contains the mixture = Total pressure
Total pressure = Partial pressure N₂ + Partial pressure CO₂ + Partial pressure O₂
95 kPa = 48 kPa + 24 kPa + Partial pressure O₂
95 kPa - 48 kPa - 24 kPa = Partial pressure O₂
23 kPa = Partial pressure O₂
Answer:
The volume is 1.2L
Explanation:
Initial volume (V1) = 700mL = 0.7L
Initial temperature (T1) = 7°C = (7 + 273.15)K = 280.15K
Initial pressure = 106.6kPa = 106600Pa
Final temperature (T2) = 27°C = (27 + 273.15)K = 300.15K
Final pressure (P2) = 66.6kPa = 66600Pa
Final volume (V2) = ?
To solve this question, we need to use combined gas equation which is a combination of Boyle's law, Charles Law and pressure law.
(P1 × V1) / T1 = (P2 × V2) / T2
solve for V2 by making it the subject of formula,
P1 × V1 × T2 = P2 × V2 × T1
V2 = (P1 × V1 × T2) / (P2 × T1)
V2 = (106600 × 0.7 × 300.15) / (66600 × 280.15)
V2 = 22397193 / 18657990
V2 = 1.2L
The final volume of the gas is 1.2L
Answer:
░░░░░▐▀█▀▌░░░░▀█▄░░░
░░░░░▐█▄█▌░░░░░░▀█▄░░
░░░░░░▀▄▀░░░▄▄▄▄▄▀▀░░
░░░░▄▄▄██▀▀▀▀░░░░░░░
░░░█▀▄▄▄█░▀▀░░
░░░▌░▄▄▄▐▌▀▀▀░░ This is Bob
▄░▐░░░▄▄░█░▀▀ ░░
▀█▌░░░▄░▀█▀░▀ ░░ Copy And Paste Him In Brainly Question,
░░░░░░░▄▄▐▌▄▄░░░ So, He Can Take
░░░░░░░▀███▀█░▄░░ Over Brainly
Explanation: