Answer:
a) ![v = \frac{[L]}{[T]} = LT^{-1}](https://tex.z-dn.net/?f=%20v%20%3D%20%5Cfrac%7B%5BL%5D%7D%7B%5BT%5D%7D%20%3D%20LT%5E%7B-1%7D)
b) ![a = \frac{[L}{T}^{-1}]}{{T}}= L T^{-1} T^{-1}= L T^{-2}](https://tex.z-dn.net/?f=%20a%20%3D%20%5Cfrac%7B%5BL%7D%7BT%7D%5E%7B-1%7D%5D%7D%7B%7BT%7D%7D%3D%20L%20T%5E%7B-1%7D%20T%5E%7B-1%7D%3D%20L%20T%5E%7B-2%7D)
c) ![\int v dt = s(t) = [L]=L](https://tex.z-dn.net/?f=%20%5Cint%20v%20dt%20%3D%20s%28t%29%20%3D%20%5BL%5D%3DL)
d) ![\int a dt = v(t) = [L][T]^{-1}=LT^{-1}](https://tex.z-dn.net/?f=%20%5Cint%20a%20dt%20%3D%20v%28t%29%20%3D%20%5BL%5D%5BT%5D%5E%7B-1%7D%3DLT%5E%7B-1%7D)
e) ![\frac{da}{dt}= \frac{[L][T]^{-2}}{T} = [L][T]^{-2} [T]^{-1} = LT^{-3}](https://tex.z-dn.net/?f=%20%5Cfrac%7Bda%7D%7Bdt%7D%3D%20%5Cfrac%7B%5BL%5D%5BT%5D%5E%7B-2%7D%7D%7BT%7D%20%3D%20%5BL%5D%5BT%5D%5E%7B-2%7D%20%5BT%5D%5E%7B-1%7D%20%3D%20LT%5E%7B-3%7D)
Step-by-step explanation:
Let define some notation:
[L]= represent longitude , [T] =represent time
And we have defined:
s(t) a position function


Part a
If we do the dimensional analysis for v we got:
![v = \frac{[L]}{[T]} = LT^{-1}](https://tex.z-dn.net/?f=%20v%20%3D%20%5Cfrac%7B%5BL%5D%7D%7B%5BT%5D%7D%20%3D%20LT%5E%7B-1%7D)
Part b
For the acceleration we can use the result obtained from part a and we got:
![a = \frac{[L}{T}^{-1}]}{{T}}= L T^{-1} T^{-1}= L T^{-2}](https://tex.z-dn.net/?f=%20a%20%3D%20%5Cfrac%7B%5BL%7D%7BT%7D%5E%7B-1%7D%5D%7D%7B%7BT%7D%7D%3D%20L%20T%5E%7B-1%7D%20T%5E%7B-1%7D%3D%20L%20T%5E%7B-2%7D)
Part c
From definition if we do the integral of the velocity respect to t we got the position:

And the dimensional analysis for the position is:
![\int v dt = s(t) = [L]=L](https://tex.z-dn.net/?f=%20%5Cint%20v%20dt%20%3D%20s%28t%29%20%3D%20%5BL%5D%3DL)
Part d
The integral for the acceleration respect to the time is the velocity:

And the dimensional analysis for the position is:
![\int a dt = v(t) = [L][T]^{-1}=LT^{-1}](https://tex.z-dn.net/?f=%20%5Cint%20a%20dt%20%3D%20v%28t%29%20%3D%20%5BL%5D%5BT%5D%5E%7B-1%7D%3DLT%5E%7B-1%7D)
Part e
If we take the derivate respect to the acceleration and we want to find the dimensional analysis for this case we got:
![\frac{da}{dt}= \frac{[L][T]^{-2}}{T} = [L][T]^{-2} [T]^{-1} = LT^{-3}](https://tex.z-dn.net/?f=%20%5Cfrac%7Bda%7D%7Bdt%7D%3D%20%5Cfrac%7B%5BL%5D%5BT%5D%5E%7B-2%7D%7D%7BT%7D%20%3D%20%5BL%5D%5BT%5D%5E%7B-2%7D%20%5BT%5D%5E%7B-1%7D%20%3D%20LT%5E%7B-3%7D)
The answer would be 5.
When adding a negative to a positive, it's the same thing as subtracting.
Ummmm no I can’t tell you LOL
You would use, Order of Operations, A.K.A PEMDAS.
Parenthesis, Exponets, Multiplication, Division, Addition, Subtraction
Follow that order and you do the work yourself, you would never learn by asking other's for the answer. >:)
From: Dark Angel
Answer:
26
Step-by-step explanation: