Its A. because it measures the rate of the decay of the isotope
Answer:
Explanation:
M(s) → M (g ) + 20.1 kJ --- ( 1 )
X₂ ( g ) → 2X (g ) + 327.3 kJ ---- ( 2 )
M( s) + 2 X₂(g) → M X₄ (g ) - 98.7 kJ ----- ( 3 )
( 3 ) - 2 x ( 2 ) - ( 1 )
M( s) + 2 X₂(g) - 2 X₂ ( g ) - M(s) → M X₄ (g ) - 98.7 kJ - 2 [ 2X (g ) + 327.3 kJ ] - M (g ) - 20.1 kJ
0 = M X₄ (g ) - 4 X (g ) - M (g ) - 773.4 kJ
4 X (g ) + M (g ) = M X₄ (g ) - 773.4kJ
heat of formation of M X₄ (g ) is - 773.4 kJ
Bond energy of one M - X bond = 773.4 / 4 = 193.4 kJ / mole
K, P, K, K, P, K, K, P, K, P. If it is moving, it is kinetic, if it isn't, it's potential. the sugar one is a little tricky using that method though, because we generally consider this in terms of spacial movement, but sugar holds energy which is later released by your body to allow you to move.the chemical bonds have potential energy because they release energy when broken.
Stomatal pores in plants regulate the amount of water and solutes within them by opening and closing their guard cells using osmotic pressure. In order for plants to produce energy and maintain cellular function, their cells undergo the highly intricate process of photosynthesis .
Answer:The maximum kinetic energy KEe of ejected electrons (photoelectrons) is given by KEe=hf−BE KE e = h f − BE , where hf is the photon energy and BE is the binding energy (or work function) of the electron to the particular material.
Explanation: