Answer:
The heat released by the combustion is 20,47 kJ
Explanation:
Bomb calorimeter is an instrument used to measure the heat of a reaction. The formula is:
Q = C×m×ΔT + Cc×ΔT
Where:
Q is the heat released
C is specific heat of water (4,186kJ/kg°C)
m is mass of water (1,00kg)
ΔT is temperature change (23,65°C - 20,45°C)
And Cc is heat capacity of the calorimeter (2,21kJ/°C)
Replacing these values the heat released by the combustion is:
<em>Q = 20,47 kJ</em>
A compound
its refers to a substance formed when two or more types of atoms bond chemically
Stoichiometry:
First, calculate the number of grams for one mole of Ca3 (PO3)4
(3 * (Mass of Ca)) + (4 * (Mass of P + (3 * Mass of Oxygen)))
= (3*40.08) + 4(30.97 + (3*16.00))
=(120.24) + 4(78.97)
=436.12 g / mol Ca3(PO3)4
This means there are 436.12 g per 1 mole of Ca(PO3)4. Since there are 4.50 moles of Calcium Phosphate, mulitply the molar mass of Ca(PO3)4 by 4.50 and you should get 1962.54 g. Since there are 3 sigfigs, the final answer is 1960 g.
on a side note: I put in all my work in case 1. your periodic table if different, 2. my work is wrong, 3. you put in the question wrong because I feel that the actual compound would be Ca3(PO4)3 instead of Ca3(PO3)4 (if this is the case, the answer should be 1820 g).
The standard heat of formation is the heat released or absorbed when you obtain the CrO₃ compound. So, the reaction basically involves the individual elements of the compound. The complete balanced chemical reaction for the formation of CrO₃ is:
<em>2 Cr + 3 O₂ → 2 CrO₃</em>
Answer would be B. CNS the central nervous system