Answer:
Option B. 2096.1 K
Explanation:
Data obtained from the question include the following:
Enthalpy (H) = +1287 kJmol¯¹ = +1287000 Jmol¯¹
Entropy (S) = +614 JK¯¹mol¯¹
Temperature (T) =.?
Entropy is related to enthalphy and temperature by the following equation:
Change in entropy (ΔS) = change in enthalphy (ΔH) / Temperature (T)
ΔS = ΔH / T
With the above formula, we can obtain the temperature at which the reaction will be feasible as follow:
ΔS = ΔH / T
614 = 1287000/ T
Cross multiply
614 x T = 1287000
Divide both side by 614
T = 1287000/614
T = 2096.1 K
Therefore, the temperature at which the reaction will be feasible is 2096.1 K
Answer:
Explanation:
Num of molecules = num of moles * Avogadro's constant (6.02* 10^23)
But num of moles = reacting mass / molar mass
Molar mass of H20= 2*1 + 16 = 2+16 = 18g
Reacting mass of H20 = 0.55g
Therefore, num of moles of H20 = 0.55g/18g = 0.031 moles
Therefore, num of molecules of H20 = 0.031 * 6.02*10^23
= 1.87*10^22 molecules of H20
Answer:
kinetic energy is there is also known as motion energy this is the form of energy possessed by moving objects
Purpose
prediction
procedure
data
calculation
conclusion - results etc.