In order to solve this problem, we transform the statements into
algebraic expressions. First, we assign the variables.
Let:
x = Gina’s number
y = Sara’s number
For the first equation, we show that Gina’s number is greater
than Sara’s number by 2. For the second equation, we show that the sum of both
numbers is 68.
<span>(1)
</span>x – y = 2
<span>(2)
</span>x + y = 68
<span>We
add the two expressions, which result in the expression: 2x = 70. Then we
divide 70 by 2 to get the value of x. We then have x = 35. Using the second
equation, we solve for y = 68-35. This gives y = 33. To summarize, Gina’s
number is 35 while Sara’s number is 33.</span>
So, to set up your equation is the hardest part. If you remember the basic format, you're set.
I(t) = P * (1+r%)^t
t= time and this will be our variable
Initial amount P = $2740
Rate = 4.3% which converts numerically into .043
I(t) = 7000
Before we get to find out how to find how many years it takes to get to $7000, set up the basic equation by plugging in what we know.
I(t) = $2740(1+4.3%)^t
I(t)=2740(1.043)^t
Now plug in for $7000 for I(t)
7000=2740(1.043)^t Divide both sides by 2740
7000/2740 = 2740/2740(1.043)^t
2.55474453=(1.043)^t
Now you can solve for t in two ways. You can either use the natural log or graph it on your graphing calculate and see when the two equations meet.
In your calculator you can set up:
ln(2.55474453)/ln(1.043) = t which is the method I prefer since it's much simpler
t=22.278528
but you can also graph it in your ti-84
with
y1=2.55474453
y2=(1.043)^x
and find where they intersect on the graph.
either way it'll be the same answer
Answer:c
Step-by-step explanation:
Answer:
Your answers 5 :)
Step-by-step explanation:
I took the test and i did it in my head ignore the other person, thanks please mark brainliest!