Answer:The elements in the first column of the Periodic Table (other than hydrogen) are known as Group 1A metals, or alkali metals. When you compare the chemical properties of these elements (lithium, sodium, potassium, rubidium, cesium, and francium), what you'll notice is that they are all remarkably similar.
Explanation:
Answer:
Fluorine
General Formulas and Concepts:
<u>Chemistry</u>
- Reading a Periodic Table
- Periodic Trends
- Electronegativity - the tendency for an element to attract an electron to itself
- Z-effective and Coulomb's Law, Forces of Attraction
Explanation:
The Periodic Trend for Electronegativity is up and to the right of the Periodic Table.
Fluorine is Element 9 and has 9 protons. Radium is Element 88 and has 88 protons. Therefore, Radium has a bigger Zeff than Flourine.
However, since Radium is in Period 7 while Fluorine is in Period 2, Radium has more core e⁻ than Fluorine does. This will create a much larger shielding effect, causing Radium's outermost e⁻ to have less FOA between them. Fluorine, since it has less core e⁻, the FOA between the nucleus and outershell e⁻ will be much stronger.
Therefore, Fluorine would attract an electron more than Radium, thus bringing us to the conclusion that Fluorine has a higher electronegativity.
Answer:
Kinetic Energy and Potential Energy
Explanation:
When an object is in motion(ie.moving), it has kinetic energy. Energy stored in an object due to position and state, is called potential energy.
Fire Burning is the correct answer
It will react by being a chemical change because something new is formed