Answer:
<h2>14.12 moles</h2>
Explanation:
To find the number of moles in a substance given it's number of entities we use the formula

where n is the number of moles
N is the number of entities
L is the Avogadro's constant which is
6.02 × 10²³ entities
From the question we have

We have the final answer as
<h3>14.12 moles</h3>
Hope this helps you
Answer:
The specie which is oxidized is:- 
The specie which is reduced is:- 
Explanation:
Oxidation reaction is defined as the chemical reaction in which an atom looses its electrons. The oxidation number of the atom gets increased during this reaction.
Reduction reaction is defined as the chemical reaction in which an atom gains electrons. The oxidation number of the atom gets reduced during this reaction.
For the given chemical reaction:
The half cell reactions for the above reaction follows:
Oxidation half reaction: 
Reduction half reaction: 
Thus, the specie which is oxidized is:- 
The specie which is reduced is:- 
Answer:D)
Explanation: the distance traveled over time
At a particular temperature, the solubility of He in water is 0.080 M when the partial pressure is 1.7 atm. 4.25 atm is the partial pressure of He would give a solubility of 0.200 M.
<h3>What is Henry's Law ?</h3>
Henry's Law is a gas law states that at a constant temperature the amount of gas that dissolved in a liquid is directly proportional to the partial pressure of that gas.
<h3>What is relationship between Henry's Law constant and Solubility ?</h3>
The solubility of gas is directly proportional to partial pressure.
It is expressed as:

where,
= Solubility of gas
= Henry's Law constant
= Partial pressure of gas
Now put the values in above expression we get

0.080M =
× 1.7 atm

= 0.047 M/atm
Now we have to find the partial pressure of He

0.200 M = 0.047 M/atm × 

= 4.25 atm
Thus from the above conclusion we can say that At a particular temperature, the solubility of He in water is 0.080 M when the partial pressure is 1.7 atm. 4.25 atm is the partial pressure of He would give a solubility of 0.200 M.
Learn more about the Henry's Law here: brainly.com/question/23204201
#SPJ4
Answer is: 0.102 moles of HCl would react.
Balanced chemical reaction:
2HCl(aq) + Sr(OH)₂ → SrCl₂(aq) + 2H₂O(l).
V(Sr(OH)₂) = 37.1 mL ÷ 1000 mL/L.
V(Sr(OH)₂) = 0.0371 L; volume of the strontium hydroxide solution.
c(Sr(OH)₂) = 0.138 M; molarity of the strontium hydroxide solution.
n(Sr(OH)₂) = c(Sr(OH)₂) · V(Sr(OH)₂).
n(Sr(OH)₂) = 0.0371 L · 0.138 mol/L.
n(Sr(OH)₂) = 0.0051 mol; amount of the strontium hydroxide.
From balanced chemical reaction: n(Sr(OH)₂) : n(HCl) = 1 : 2.
n(HCl) = 2 · n(Sr(OH)₂).
n(HCl) = 2 · 0.0051 mol.
n(HCl) = 0.0102 mol; amount of the hydrochloric acid.