process by which one separates compounds from one another by passing a mixture through column that retains some compounds longer than others.
Answer:
Chlorine gas.
Explanation:
Hello!
In this case, the undergoing chemical reaction is:

Thus, given the moles of reacting both sodium and chlorine, we compute the moles of sodium chloride yielded by each reactant by considering the 2:2 and 1:2 mole ratios:

Thus, since chlorine yields less moles of sodium chloride, we infer it is the limiting reactant.
Best regards!
Answer:
bent
Explanation:
The molecular formula of sulfur dioxide is written as SO₂
The molecular geometry of sulfur dioxide can be determined using the Lewis structure.
The Lewis structure shows the distribution of electrons around the atoms of a given compound such as sulfur dioxide (SO₂).
In this compound, sulfur is the central atom with 6 valence electrons.
The sulfur is bonded covalently with two oxygen atoms, each with 6 valence electrons. Oxygen contributes 2 lone pairs while sulfur which is the central atom contributes 1 lone pair of electrons in the bond.
The bond angle between the two oxygen atoms and the central sulfur atom is approximately 120⁰, as a result of the bent shape of the molecular structure.
Answer:
<span>Chlorine (Cl) is the oxidizing agent because it gains an electron.
Explanation:
Reaction is as follow,
</span><span> Cl</span>₂<span> (aq) + 2 Br</span>⁻<span> (aq) </span>→ <span> 2Cl(aq) + Br</span>₂ <span>(aq)
Oxidation Reaction:
2 Br</span>⁻ → Br₂ + 2 e⁻
Two atoms of Br⁻ (Bromide) looses two electrons to form Br₂ molecule. Hence it is oxidized and is acting as reducing agent.
Reduction Reaction:
Cl₂ + 2 e⁻ → 2 Cl⁻
One molecule of Cl₂ gains two electrons to form two chloride ions (Cl⁻). Therefore, it is reduced and has oxidized Br⁻, Hence, acting as a oxidizing agent.